下列結論中正確的是________.
①函數(shù)y=f(x)是定義在R上的偶函數(shù),且f(x+1)=-f(x),則函數(shù)y=f(x)的圖象關于直線x=1對稱;
②已知ξ~N(16,σ2),若P(ξ>17)=0.35,則P(15<ξ<16)=0.15;
數(shù)學公式
④線性相關系數(shù)r的絕對值越接近于1,表明兩個變量線性相關程度越弱.

①②③
分析:①由f(-x)=f(x),f(x+1)=-f(x)可得f(1+x)=-f(-x),則可求f(x)圖象關對稱中心,又f(x)圖象關于y軸(x=0)對稱,故x=1也是圖象的一條對稱軸,故可判斷;
②根據(jù)隨機變量ξ服從標準正態(tài)分布N(16,σ2),得到正態(tài)曲線關于ξ=16對稱,得到變量小于15的概率,這樣要求的概率是用0.5減去P(ξ>17)的值即得.
③由題意得,函數(shù)f(x)在(0,+∞)是減函數(shù),將ln的函數(shù)值轉化為f(ln3),再比較log43,ln3,0.4-1.2,從而得出它們的函數(shù)的大小即可進行判斷.
④根據(jù)線性相關系數(shù)r的絕對值越接近于1,表明兩個變量線性相關程度越強,得到結論.
解答:①由f(x)為偶函數(shù)可得f(-x)=f(x),由f(x+1)=-f(x)可得f(1+x)=-f(-x),則f(x)圖象關于(,0)對稱,又f(x)圖象關于y軸(x=0)對稱,故x=1也是圖象的一條對稱軸,故①正確;
②:∵隨機變量ξ服從標準正態(tài)分布N(16,σ2),
∴正態(tài)曲線關于ξ=16對稱,
∵P(ξ>17)=0.35
若P(ξ<15)=0.35,
則P(15<ξ<16)=0.5-0.35=0.15,正確;
③由題意得,函數(shù)f(x)在(0,+∞)是減函數(shù),
且f(ln)=f(ln3),
又∵log43<ln3<0.4-1.2,
∴f(log43)>f(ln3)>f(0.4-1.2),
即c<a<b,故正確.
④線性相關系數(shù)r的絕對值越接近于1,表明兩個變量線性相關程度越強,④不正確,
故答案為:①②③
點評:本題考查函數(shù)的對稱性,函數(shù)的單調性,相關系數(shù),正態(tài)分布曲線的特點及曲線所表示的意義,考查學生分析問題解決問題的能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,下列結論中正確的是(  )
A、
AB
=
CD
B、
AB
-
AD
=
BD
C、
AD
+
AB
=
AC
D、
AD
+
BC
=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(x-π),g(x)=cos(x+π),則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•瀘州模擬)設函數(shù)f(x)=sin(x+
π
3
)
,則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α、β是兩個不重合的平面,l是空間一條直線,命題p:若α∥l,β∥l,則α∥β;命題q:若α⊥l,β⊥l,則α∥β.對以上兩個命題,下列結論中正確的是( 。

查看答案和解析>>

同步練習冊答案