已知函數(shù),,其中

(Ⅰ)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)若時,函數(shù)有極值,求函數(shù)圖象的對稱中心的坐標(biāo);

(Ⅲ)設(shè)函數(shù) (是自然對數(shù)的底數(shù)),是否存在a使上為減函數(shù),若存在,求實數(shù)a的范圍;若不存在,請說明理由.

 

【答案】

(Ⅰ) 單調(diào)增區(qū)間是,;(II) ;(III)

【解析】

試題分析:(Ⅰ) 為確定函數(shù)的單調(diào)區(qū)間,往往遵循“求導(dǎo)數(shù)、求駐點、分區(qū)間討論導(dǎo)數(shù)的正負(fù)、確定函數(shù)的單調(diào)性”等步驟.

(Ⅱ) 為確定函數(shù)的極值,往往遵循“求導(dǎo)數(shù)、求駐點、分區(qū)間討論導(dǎo)數(shù)的正負(fù)、確定函數(shù)的極值”等步驟.

本小題根據(jù)函數(shù)有極值,建立的方程,求得,從而得到.根據(jù)的圖象可由的圖象向下平移16個單位長度得到,而的圖象關(guān)于(0,0)對稱,

得到函數(shù)的圖象的對稱中心坐標(biāo).

(Ⅲ)假設(shè)存在a使上為減函數(shù),通過討論導(dǎo)函數(shù)為負(fù)數(shù),得到的不等式,達(dá)到解題目的.

試題解析: (Ⅰ) 當(dāng),

,        1分

設(shè),即,

所以,或,        2分

單調(diào)增區(qū)間是;        4分

(Ⅱ) 當(dāng)時,函數(shù)有極值,

所以,        5分

,即,        6分

所以,

的圖象可由的圖象向下平移16個單位長度得到,而的圖象關(guān)于(0,0)對稱,        7分

所以函數(shù)的圖象的對稱中心坐標(biāo)為;        8分

(Ⅲ)假設(shè)存在a使上為減函數(shù),

        9分

當(dāng)上為減函數(shù),則上為減函數(shù),上為減函數(shù),且,則.        10分

由(Ⅰ)知當(dāng)時,的單調(diào)減區(qū)間是

(1)當(dāng)時,在定義域上為增函數(shù),

不合題意;        11分

(2)當(dāng)時,由得:上為增函數(shù),則在上也為增函數(shù),也不合題意;        12分

(3)當(dāng)時,由得:,上為減函數(shù),如果上為減函數(shù),則上為減函數(shù),則:

,所以.        13分

綜上所述,符合條件的a滿足.        14分

考點:應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,不等式的解法.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),(其中)。

(Ⅰ)求函數(shù)的定義域;

(Ⅱ)判斷函數(shù)的奇偶性并給出證明;

(Ⅲ)若時,函數(shù)的值域是,求實數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),,其中

(Ⅰ) 當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ) 若時,函數(shù)有極值,求函數(shù)圖象的對稱中心的坐標(biāo);

(Ⅲ)設(shè)函數(shù) (是自然對數(shù)的底數(shù)),是否存在a使上為減函數(shù),若存在,求實數(shù)a的范圍;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年哈爾濱市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本題滿分12分)已知函數(shù)滿足,其中

(1)對于函數(shù),當(dāng)時,,求實數(shù)的取值集合;

(2)當(dāng)時,恒成立,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:東北師大附中2009-2010學(xué)年高一上學(xué)期期末(數(shù)學(xué))試題 題型:解答題

已知函數(shù),(其中)。

(Ⅰ)求函數(shù)的定義域;

(Ⅱ)判斷函數(shù)的奇偶性并給出證明;

(Ⅲ)若時,函數(shù)的值域是,求實數(shù)的值。

 

查看答案和解析>>

同步練習(xí)冊答案