精英家教網 > 高中數學 > 題目詳情
在邊長為a的正三角形鐵皮的三個角切去三個全等的四邊形,再把它的邊沿虛線折起(如圖),做成一個無蓋的正三角形底鐵皮箱,當箱底邊長為多少時,箱子容積最大?最大容積是多少?
當箱子底邊長為a時,箱子容積最大,最大值為a3.
設箱底邊長為x,則箱高為h=(0<x<a),
箱子的容積為V(x)=x2×sin60°×h=ax2x3(0<x<a).
由V′(x)=ax-x2=0,解得x1=0(舍),x2a,
且當x∈時,V′(x)>0;當x∈時,V′(x)<0,
所以函數V(x)在x=a處取得極大值,
這個極大值就是函數V(x)的最大值:Va3.
答:當箱子底邊長為a時,箱子容積最大,最大值為a3.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,△中,,,,在三角形內挖去一個半圓(圓心在邊上,半圓與、分別相切于點,與交于點),將△繞直線旋轉一周得到一個旋轉體.

(1)求該幾何體中間一個空心球的表面積的大。
(2)求圖中陰影部分繞直線旋轉一周所得旋轉體的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,△ABC內接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC平面ABC,,

(1)證明:平面ACD平面ADE;
(2)記,表示三棱錐A-CBE的體積,求函數的解析式及最大值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

中,,,,若把繞直線旋轉一周,則所形成的幾何體的體積是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四邊形ABCD繞AD旋轉一周所成幾何體的表面積及體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若長方體三個面的面積分別為,,,則此長方體的外接球的表面積是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若兩個球的表面積之比為1:4,則這兩個球的體積之比為( 。
A.1:2, B.1:4, C.1:8,D.1:16

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知H是球O的直徑AB上一點,AH∶HB=1∶2,AB⊥平面α,H為垂足,α截球O所得截面的面積為π,則球O的表面積為    .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若長方體的頂點都在半徑為3的球面上,則該長方體表面積的最大值為           

查看答案和解析>>

同步練習冊答案