拋物線y=-2x2的準線方程是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:先把其轉化為標準形式,再結合其準線的結論即可求出結果.
解答:∵y=-2x2;
∴x2=-y;
∴2p=?=
又因為焦點在Y軸上,
所以其準線方程為y=
故選:D.
點評:本題主要考察拋物線的基本性質,解決拋物線準線問題的關鍵在于先轉化為標準形式,再判斷焦點所在位置.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①若|x-lgx|<x+|lgx|成立,則x>1;
②拋物線y=2x2的焦點坐標是(
1
2
,0)
;
③已知|
a
|=|
b
|=2
,
a
b
的夾角為
π
3
,則
a
+
b
a
上的投影為3;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
處取得最小值,則f(
2
-x)=-f(x)
;.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個焦點為F1,F(xiàn)2,則這個橢圓上存在六個不同的點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標原點,則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中正確命題的序號是
 
.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y=2x2的焦點坐標為(  )
A、(1,0)
B、(
1
4
,0)
C、(0,
1
4
D、(0,
1
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:拋物線y=2x2的準線方程為y=-
1
2
;命題q:若函數(shù)f(x+1)為偶函數(shù),則f(x)關于x=1對稱.則下列命題是真命題的是( 。
A、p∧q
B、p∨(¬q)
C、(¬p)∧(¬q)
D、p∨q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泰安二模)給出下列三個命題:
①若直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
②雙曲線C:
x2
16
-
y2
9
=-1
的離心率為
5
3

③若C1x2+y2+2x=0,⊙C2x2+y2+2y-1=0,則這兩圓恰有2條公切線;
④若直線l1:a2x-y+6=0與直線l2:4x-(a-3)+9-0互相垂直,則a=-1.
其中正確命題的序號是
②③
②③
.(把你認為正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案