【題目】已知若橢圓)交軸于,兩點,點是橢圓上異于,的任意一點,直線,分別交軸于點,則為定值.

1)若將雙曲線與橢圓類比,試寫出類比得到的命題;

2)判定(1)類比得到命題的真假,請說明理由.

【答案】1)見解析;(2)命題為真命題,證明見解析.

【解析】

1)根據(jù)類比推理的基本原則可直接寫出結果;

2)設,,表示出直線方程后可求得點坐標,由此得到,同理得到,根據(jù)平面向量的數(shù)量積運算可構造方程,結合點在雙曲線上可化簡得到結果.

1)類比得命題:若雙曲線軸于兩點,點是雙曲線上異于的任意一點,直線分別交軸于點,則為定值.

2)在(1)中類比得到的命題為真命題,證明如下:

不妨設,,,則,

∴直線方程為.

,則,∴點坐標為.

,∴.

同法可求得:.

.

又∵,∴.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)x>2),若恒成立,則整數(shù)k的最大值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)計劃用兩張鐵絲網(wǎng)在一片空地上圍成一個梯形養(yǎng)雞場,,,已知兩段是由長為的鐵絲網(wǎng)折成,兩段是由長為的鐵絲網(wǎng)折成.設上底的長為,所圍成的梯形面積為.

1)求S關于x的函數(shù)解析式,并求x的取值范圍;

2)當x為何值時,養(yǎng)雞場的面積最大?最大面積為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著全民健康運動的普及,每天一萬步已經(jīng)成為一種健康時尚,某學校為了教職工健康工作,在全校范圍內倡導每天一萬步健步走活動,學校界定一人一天走路不足4千步為健步常人,不少于16千步為健步超人,其他為健步達人,學校隨機抽查了36名教職工,其每天的走步情況統(tǒng)計如下:

步數(shù)

人數(shù)

6

18

12

現(xiàn)對抽查的36人采用分層抽樣的方式選出6

1)求從這三類人中各抽多少人;

2)現(xiàn)從選出的6人中隨機抽取2人,求這兩人健步類型相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點且斜率為1的直線交拋物線于兩點,( )

A. 1 B. 2 C. 4 D. 8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某公園有三個警衛(wèi)室、有直道相連,千米,千米,千米.

(1)保安甲沿從警衛(wèi)室出發(fā)行至點處,此時,求的直線距離;

(2)保安甲沿從警衛(wèi)室出發(fā)前往警衛(wèi)室,同時保安乙沿從警衛(wèi)室出發(fā)前往警衛(wèi)室,甲的速度為1千米/小時,乙的速度為2千米/小時,若甲乙兩人通過對講機聯(lián)系,對講機在公園內的最大通話距離不超過3千米,試問有多長時間兩人不能通話?(精確到0.01小時)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取某中學甲乙兩班各6名學生,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如下圖.

甲班

2

9 1 0

8 2

18

17

16

乙班

0

0 1 4 7

3

(1)判斷哪個班的平均身高較高, 并說明理由;

(2)計算甲班的樣本方差;

(3)現(xiàn)從乙班這6名學生中隨機抽取兩名學生,求至少有一名身高不低于的學生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,如果都是整數(shù),就稱點為整點,下列命題中正確的是_____________(寫出所有正確命題的編號)

①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點

②如果都是無理數(shù),則直線不經(jīng)過任何整點

③直線經(jīng)過無窮多個整點,當且僅當經(jīng)過兩個不同的整點

④直線經(jīng)過無窮多個整點的充分必要條件是:都是有理數(shù)

⑤存在恰經(jīng)過一個整點的直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,圓,直線與橢圓交于,兩點,與圓相切與點,且為線段的中點,若這樣的直線4條,則的取值范圍為______.

查看答案和解析>>

同步練習冊答案