已知拋物線上有一點到焦點的距離為.
(1)求的值.
(2)如圖,設直線與拋物線交于兩點,且,過弦的中點作垂直于軸的直線與拋物線交于點,連接.試判斷的面積是否為定值?若是,求出定值;否則,請說明理由.

(1);(2)是,.

解析試題分析:(1)由拋物線定義得,,求,從而拋物線方程確定,將點代入拋物線方程,可確定;(2)將拋物線方程與直線方程聯(lián)立,得,由已知,得關于的等式,由已知條件的面積可表示為,再結合,可證明其值等于
(1)焦點,.∴,代入,得
(2)聯(lián)立,得,,即,
,,∴,,∴的面積
考點:1、拋物線的定義;2、直線和拋物線的位置關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

,分別是橢圓的左右焦點,M是C上一點且與x軸垂直,直線與C的另一個交點為N.
(1)若直線MN的斜率為,求C的離心率;
(2)若直線MN在y軸上的截距為2,且,求a,b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)(2011•湖北)平面內與兩定點A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關系;
(Ⅱ)當m=﹣1時,對應的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應的曲線為C2,設F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

分別是橢圓的 左,右焦點。
(1)若P是該橢圓上一個動點,求的 最大值和最小值。
(2)設過定點M(0,2)的 直線l與橢圓交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點的坐標分別為.直線,相交于點,且它們的斜率之積是,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)設是曲線上的動點,直線,分別交直線于點,線段的中點為,求直線與直線的斜率之積的取值范圍;
(3)在(2)的條件下,記直線的交點為,試探究點與曲線的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C過點,兩焦點為、,是坐標原點,不經(jīng)過原點的直線與該橢圓交于兩個不同點、,且直線、、的斜率依次成等比數(shù)列.
(1)求橢圓C的方程;       
(2)求直線的斜率;
(3)求面積的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2012•廣東)在平面直角坐標系xOy中,已知橢圓C:的離心率,且橢圓C上的點到點Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xoy中,已知橢圓C1的左焦點為F1(-1,0),且點P(0,1)在C1上。
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在坐標原點,對稱軸為坐標軸,焦點在軸上,有一個頂點為
(1)求橢圓的方程;
(2)過點作直線與橢圓交于兩點,線段的中點為,求直線的斜率的取值范圍.

查看答案和解析>>

同步練習冊答案