分析 (1)利用待定系數(shù)法,代入點(diǎn)的坐標(biāo),即可求⊙C的方程;
(2)設(shè)MN=x,OM=2x(x>0),則由割線定理可得2x•3x=1•3,可得圓心到直線的距離,即可求直線l方程.
解答 解:(1)設(shè)圓的方程為x2+y2+Dx+Ey+F=0,則$\left\{\begin{array}{l}{5+2D+E+F=0}\\{9+3D+F=0}\\{3+\frac{3}{2}D+\frac{\sqrt{3}}{2}E+F=0}\end{array}\right.$,
∴D=-4,E=0,F(xiàn)=3,
∴⊙C的方程為x2+y2-4x+3=0;
(2)x2+y2-4x+3=0可化為(x-2)2+y2=1.
設(shè)MN=x,OM=2x(x>0),則由割線定理可得2x•3x=1•3,
∴x=$\frac{\sqrt{2}}{2}$,
∴圓心到直線的距離d=$\sqrt{1-\frac{1}{8}}$=$\frac{\sqrt{14}}{4}$,
設(shè)直線l的方程為y=kx,即kx-y=0,∴$\frac{|2k|}{\sqrt{{k}^{2}+1}}$=$\frac{\sqrt{14}}{4}$,
∴k=±$\frac{\sqrt{7}}{5}$,∴直線l的方程為y=±$\frac{\sqrt{7}}{5}$x.
點(diǎn)評(píng) 本題考查圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{6}$,$\frac{1}{\root{3}{16}}$] | B. | [$\frac{1}{6}$,$\frac{1}{4}$] | C. | [$\frac{1}{9}$,$\frac{1}{\root{3}{16}}$] | D. | [$\frac{1}{9}$,$\frac{1}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com