分析 (Ⅰ)證明:AD⊥BD,SA⊥BD,即可證明BD⊥平面SAD;
(Ⅱ)利用等體積方法,求點(diǎn)C到平面SAB的距離.
解答 (Ⅰ)證明:△ADB中,由余弦定理可得BD=2,∴BD2+AD2=AB2,∴AD⊥BD.
取SD的中點(diǎn)E,連接DE,BE,則DE⊥SA,BE⊥SA,
∵DE∩BE=E,∴SA⊥平面BDE,
∴SA⊥BD,
∵SA∩AD=A,
∴BD⊥平面SAD;
(Ⅱ)解:點(diǎn)C到平面SAB的距離=點(diǎn)D到平面SAB的距離h.
△SAD中,SAD=30°,AD=SD=2$\sqrt{3}$,∴S△SAD=$\frac{1}{2}×2\sqrt{3}×2\sqrt{3}×\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,
△SAB中,BA=BS=4,SA=6,∴S△SAB=$\frac{1}{2}×6×\sqrt{16-9}$=3$\sqrt{7}$,
由等體積可得$\frac{1}{3}×3\sqrt{3}×2=\frac{1}{3}×3\sqrt{7}h$,∴h=$\frac{2\sqrt{21}}{7}$.
點(diǎn)評(píng) 本題考查線面垂直的毆打,考查點(diǎn)面距離,考查體積的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ | B. | [-1,1] | C. | $[{-\sqrt{2},\sqrt{2}}]$ | D. | [-2,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=-$\sqrt{2}$ | B. | x=-2$\sqrt{2}$ | C. | x=-2 | D. | x=-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com