【題目】已知橢圓的左,右焦點分別是,,離心率為,直線被橢圓C截得的線段長為.

(1)求橢圓C的方程;

(2)過點且斜率為k的直線l交橢圓CA,B兩點,交x軸于P點,點A關(guān)于x軸的對稱點為M,直線BMx軸于Q點.求證:(O為坐標(biāo)原點)為常數(shù).

【答案】(1);(2)證明見解析.

【解析】

1)由題意可得點在橢圓上,代入橢圓方程可得,再利用橢圓的離心率,,求出即可求解.

2)設(shè)直線l的方程為,點P的坐標(biāo)為,設(shè),,則,根據(jù)題意求出點坐標(biāo),聯(lián)立,利用韋達定理將點坐標(biāo)用表示即可證出.

設(shè)橢圓C的焦距為,則,

由直線被橢圓C截得的線段長為可知,點在橢圓上,

從而.結(jié)合,可解得,.

故橢圓C的方程為.

(2)依題意,直線l的方程為,則P的坐標(biāo)為.

設(shè),,則,

直線BM的方程為,令,

Q點的橫坐標(biāo)為.①

又由,得,

,

,

代入①得,

,所以為常數(shù)4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新中國昂首闊步地走進2019年,迎來了她70歲華誕.某平臺組織了偉大的復(fù)興之路一新中國70周年知識問答活動,規(guī)則如下:共有30道單選題,每題4個選項中只有一個正確,每答對一題獲得5顆紅星,每答錯一題反扣2顆紅星;若放棄此題,則紅星數(shù)無變化.答題所獲得的紅星可用來兌換神秘禮品,紅星數(shù)越多獎品等級越高.小強參加該活動,其中有些題目會做,有些題目可以排除若干錯誤選項,其余的題目則完全不會.

1)請問:對于完全不會的題目,小強應(yīng)該隨機從4個選項中選一個作答,還是選擇放棄?(利用統(tǒng)計知識說明理由)

2)若小強有12道題目會做,剩下的題目中,可以排除一個錯誤選項、可以排除兩個錯誤選項和完全不會的題目的數(shù)量比是.請問:小強在本次活動中可以獲得最多紅星數(shù)的期望是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,,,且的最小值為,的圖象的相鄰兩條對稱軸之間的距離為,的圖象關(guān)于原點對稱.

(1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;

(2)在中,角所對的邊分別為,且,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)計劃用兩張鐵絲網(wǎng)在一片空地上圍成一個梯形養(yǎng)雞場,,,已知兩段是由長為的鐵絲網(wǎng)折成,兩段是由長為的鐵絲網(wǎng)折成.設(shè)上底的長為,所圍成的梯形面積為.

1)求S關(guān)于x的函數(shù)解析式,并求x的取值范圍;

2)當(dāng)x為何值時,養(yǎng)雞場的面積最大?最大面積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“劍橋?qū)W派”創(chuàng)始人之一數(shù)學(xué)家哈代說過:“數(shù)學(xué)家的造型,同畫家和詩人一樣,也應(yīng)當(dāng)是美麗的”;古希臘數(shù)學(xué)家畢達哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來美;我國古代數(shù)學(xué)家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點,過點作直線,兩點,分別交直線,兩點.

1)求的方程和焦點坐標(biāo);

2)設(shè),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的圖象與x軸相切,求實數(shù)a的值;

2)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】響應(yīng)“文化強國建設(shè)”號召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機抽取市民200人做調(diào)查,統(tǒng)計顯示,男士喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女士喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.

(1)能否在犯錯誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?

(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書交流會,從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會,記為參加交流會的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望

附:,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體,點,分別是棱,的中點,動點在線段上運動.

1)證明:平面;

2)求直線與平面所成角的正弦值的最大值.

查看答案和解析>>

同步練習(xí)冊答案