設(shè)
(Ⅰ)當(dāng),解不等式;
(Ⅱ)當(dāng)時,若,使得不等式成立,求實(shí)數(shù)的取值范圍.
(1);(2).
【解析】
試題分析:本題考查絕對值不等式的解法和不等式恒成立問題,考查轉(zhuǎn)化思想和分類討論思想.第一問,先將代入,解絕對值不等式;第二問,先將代入,得出解析式,將已知條件轉(zhuǎn)化為求最小值問題,將去絕對值轉(zhuǎn)化為分段函數(shù),通過函數(shù)圖像,求出最小值,所以,再解不等式即可.
試題解析:(I)時原不等式等價于即,
所以解集為. 5分
(II)當(dāng)時,,令,
由圖像知:當(dāng)時,取得最小值,由題意知:,
所以實(shí)數(shù)的取值范圍為. 10分
考點(diǎn):1.解絕對值不等式;2.分段函數(shù)圖像;3.存在性問題的解法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)橢圓 :()的一個頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn) 的直線 與橢圓 交于 , 兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在直線 ,使得 ,若存在,求出直線 的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當(dāng)直線斜率存在時,當(dāng)直線斜率不存在時,聯(lián)立方程組,結(jié)合得到結(jié)論。
解:(1)橢圓的頂點(diǎn)為,即
,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分
(2)由題可知,直線與橢圓必相交.
①當(dāng)直線斜率不存在時,經(jīng)檢驗(yàn)不合題意. --------5分
②當(dāng)直線斜率存在時,設(shè)存在直線為,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直線的方程為或
即或
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com