已知圓C經(jīng)過(guò)點(diǎn)A(2,-1),圓心在直線2x+y=0上,且與直線x+y=1相切,則圓C的標(biāo)準(zhǔn)方程是   
【答案】分析:由圓C的圓心經(jīng)過(guò)直線2x+y=0,設(shè)出圓心C的坐標(biāo)為(a,-2a),由點(diǎn)到直線的距離公式表示出圓心C到直線x+y=1的距離d,然后利用兩點(diǎn)間的距離公式表示出AC的長(zhǎng)度即為圓的半徑,然后根據(jù)直線與圓相切時(shí)圓心到直線的距離等于圓的半徑,列出關(guān)于a的方程,求出方程的解即可得到a的值,由a的值可確定出圓心坐標(biāo)及半徑,然后根據(jù)圓心和半徑寫(xiě)出圓的方程即可.
解答:解:因?yàn)閳A心C在直線2x+y=0上,可設(shè)圓心為C(a,-2a).
則點(diǎn)C到直線x+y=1的距離d==
據(jù)題意,d=|AC|,則=,
解得a=1.
所以圓心為C(1,-2),半徑r=d=
則所求圓的方程是(x-1)2+(y+2)2=2.
故答案為:(x-1)2+(y+2)2=2
點(diǎn)評(píng):此題考查學(xué)生掌握直線與圓相切時(shí)所滿足的條件,靈活運(yùn)用點(diǎn)到直線的距離公式及兩點(diǎn)間的距離公式化簡(jiǎn)求值,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、已知圓C經(jīng)過(guò)點(diǎn)A(2,-1),和直線l1:x+y=1相切,圓心在直線2x+y=0上.則圓C的方程是(x-1)2+(y+2)2=
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過(guò)點(diǎn)A(2,-1),圓心在直線2x+y=0上,且與直線x+y=1相切,則圓C的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過(guò)點(diǎn)A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(1)求圓C的方程;
(2)若
OP
.
OQ
=-2
,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過(guò)點(diǎn)A(2,0),B(4,0),C(0,2),
(1)求圓C的方程;
(2)若直線l:y=x+b與圓C有交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過(guò)點(diǎn)A(-2,0),B(0,2),且圓心在直線y=x上,且,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(I)求圓C的方程;
(II)若
OP
OQ
=-2
,求實(shí)數(shù)k的值;
(III)過(guò)點(diǎn)(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點(diǎn),求四邊形PMQN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案