【題目】如圖,已知四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外一點(diǎn),M是PC的中點(diǎn),在DM上取一點(diǎn)G,過(guò)G和AP作平面交平面BDM于GH.求證:

(1)AP∥平面BDM;
(2)AP∥GH.

【答案】
(1)證明:如圖連AC,交BD于O,連接OM,

因?yàn)樗倪呅蜛BCD是平行四邊形,

所以O(shè)是AC的中點(diǎn).

又M是PC的中點(diǎn),

所以O(shè)M∥AP

又OM平面BDM,AP平面BDM,

所以AP∥平面BDM


(2)證明:因?yàn)榻?jīng)過(guò)AP與點(diǎn)G的平面交平面BDM于GH,

所以由線面平行的性質(zhì)定理得AP∥GH


【解析】(1)連AC,交BD于O,連接OM,證明OM∥AP,即可證明AP∥平面BDM;(2)由線面平行的性質(zhì)定理得AP∥GH.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行,以及對(duì)直線與平面平行的性質(zhì)的理解,了解一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與該直線平行;簡(jiǎn)記為:線面平行則線線平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) =(2sinx,cosx+sinx), =(cosx,cosx﹣sinx),f(x)=
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)﹣m=0(m∈R)在區(qū)間(0, )內(nèi)有兩個(gè)不相等的實(shí)數(shù)根x1 , x2 , 記t=mcos(x1+x2),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x+1)= ,則f(2x﹣1)的定義域?yàn)椋?/span>
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),直線l與y軸的交點(diǎn)為P.
(1)寫(xiě)出點(diǎn)P的極坐標(biāo)(ρ,θ)(其中ρ>0,0≤θ<2π);
(2)求曲線 上的點(diǎn)到P點(diǎn)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系 中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系.已知曲線 (t為參數(shù)),曲線 ;
(1)將曲線 化成普通方程,將曲線 化成參數(shù)方程;
(2)判斷曲線 和曲線 的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A={x|﹣1<x≤3},B={x|m≤x<1+3m}
(1)當(dāng)m=1時(shí),求A∪B;
(2)若BRA,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,若對(duì)于任意,存在,使得成立,則稱集合是“好集合”.給出下列4個(gè)集合:①;②;③;④.其中為“好集合”的序號(hào)是( )

A. ①②④ B. ②③ C. ③④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinx+cosx,x∈R.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過(guò)怎么的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c在x=﹣1與x=2處都取得極值. (Ⅰ)求a,b的值及函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)x∈[﹣2,3],不等式f(x)+ c<c2恒成立,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案