如圖,直角梯形ABCE中,,D是CE的中點(diǎn),點(diǎn)M和點(diǎn)N在ADE繞AD向上翻折的過(guò)程中,分別以的速度,同時(shí)從點(diǎn)A和點(diǎn)B沿AE和BD各自勻速行進(jìn),t 為行進(jìn)時(shí)間,0。

求直線AE與平面CDE所成的角;

求證:MN//平面CDE。

(Ⅰ)450(Ⅱ)證明見(jiàn)解析


解析:

(1)因,所以AD⊥平面CDE,ED是AE在平面CDE上的射影,∠AED=450,所以直線AE與平面CDE所成的角為450………………………………4分

(2)解法一:如圖,取AB、AD所在直線為x軸、y軸建立直角坐標(biāo)系A(chǔ)—xyz.

 ………5分

設(shè),  

…………9分

,得,而是平面CDE的一個(gè)法向量,且平面CDE,

所以MN//平面CDE…………………………………………………………………………14分

解法二:設(shè)在翻轉(zhuǎn)過(guò)程中,點(diǎn)M到平面CDE的距離為,點(diǎn)N到平面CDE的距離為,則,同理

所以,故MN//平面CDE……………………………………………………………14分

解法三:如圖,過(guò)M作MQ//AD交ED于點(diǎn)Q,

過(guò)N作NP//AD交CD于點(diǎn)P,

連接MN和PQ…………………………………5分

設(shè)⊿ADE向上翻折的時(shí)間為t,則,………………7分

,點(diǎn)D是CE的中點(diǎn),得,四邊形ABCD為正方形,⊿ADE為等腰三角形. ……………………10分

在Rt⊿EMQ和Rt⊿DNP中,ME=ND,∠MEQ=∠NDP=450,所以Rt⊿EMQ≌Rt⊿DNP,

所以MQ//NP且MQ=NP,的四邊形MNPQ為平行四邊形,所以MN//PQ,因平面CDE,

平面CDE,所以MN//平面CDE……………………………………………………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2014•宜賓一模)如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面積等于△ADC面積的
12
.梯形ABCD所在平面外有一點(diǎn)P,滿足PA⊥平面ABCD,PA=AB.
(1)求證:平面PCD⊥平面PAC;
(2)側(cè)棱PA上是否存在點(diǎn)E,使得BE∥平面PCD?若存在,指出點(diǎn)E的位置并證明;若不存在,請(qǐng)說(shuō)明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州一模)如圖,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點(diǎn),∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求證:AF∥平面BDE;
(2)求四面體B-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省南昌市高三第二次模擬測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)如圖:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分別是邊AD和BC上的點(diǎn),且EF∥AB,AD =2AE =2AB = 4AF= 4,將四邊形EFCD沿EF折起使AE=AD.

(1)求證:AF∥平面CBD;

(2)求平面CBD與平面ABFE夾角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年廣東省惠州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點(diǎn),∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求證:AF∥平面BDE;
(2)求四面體B-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年寧夏銀川市賀蘭一中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面積等于△ADC面積的.梯形ABCD所在平面外有一點(diǎn)P,滿足PA⊥平面ABCD,PA=PB.
(1)求證:平面PCD⊥平面PAC;
(2)側(cè)棱PA上是否存在點(diǎn)E,使得BE∥平面PCD?若存在,指出點(diǎn)E的位置并證明;若不存在,請(qǐng)說(shuō)明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案