【題目】若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2﹣y2=1;
②y=x2﹣|x|;
③y=3sinx+4cosx;
④|x|+1=
對應的曲線中存在“自公切線”的有( )
A.①③
B.①④
C.②③
D.②④
【答案】C
【解析】解:①、x2﹣y2=1 是一個等軸雙曲線,沒有自公切線;
②、y=x2﹣|x|= ,在 x= 和 x=﹣ 處的切線都是y=﹣ ,故②有自公切線.
③、y=3sinx+4cosx=5sin(x+φ),cosφ= ,sinφ= ,
此函數(shù)是周期函數(shù),過圖象的最高點的切線都重合,故此函數(shù)有自公切線.
④、由于|x|+1= ,即 x2+2|x|+y2﹣3=0,結合圖象可得,此曲線沒有自公切線.
所以答案是 C.
【考點精析】解答此題的關鍵在于理解命題的真假判斷與應用的相關知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
科目:高中數(shù)學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網(wǎng)絡進行了問卷調查,并從參與調查的網(wǎng)友中抽取了200人進行抽樣分析,得到表格:(單位:人)
經(jīng)常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個函數(shù)中,在(0,1)上為增函數(shù)的是( )
A.y=﹣log2x
B.y=sinx
C.
D.y=arccosx
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在區(qū)間[ ,2]上,函數(shù)f(x)=x2+px+q與g(x)=2x+ 在同一點取得相同的最小值,那么f(x)在[ ,2]上的最大值是( )
A.
B.
C.8
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=a﹣ (a∈R).
(1)請你確定a的值,使f(x)為奇函數(shù);
(2)用單調性定義證明,無論a為何值,f(x)為增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),下列結論中不正確的是( )
A. 的圖象關于點中心對稱
B. 的圖象關于直線對稱
C. 的最大值為
D. 既是奇函數(shù),又是周期函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= ﹣2x+ln(x+1)(m∈R).
(Ⅰ)判斷x=1能否為函數(shù)f(x)的極值點,并說明理由;
(Ⅱ)若存在m∈[﹣4,﹣1),使得定義在[1,t]上的函數(shù)g(x)=f(x)﹣ln(x+1)+x3在x=1處取得最大值,求實數(shù)t的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com