(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

對于定義域為的函數(shù),若有常數(shù)M,使得對任意的,存在唯一的滿足等式,則稱M為函數(shù)f (x)的“均值”.

(1)判斷1是否為函數(shù)的“均值”,請說明理由;

(2)若函數(shù)為常數(shù))存在“均值”,求實數(shù)a的取值范圍;

(3)若函數(shù)是單調(diào)函數(shù),且其值域為區(qū)間I.試探究函數(shù)的“均值”情況(是否存在、個數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫出你的結(jié)論(不必證明).

說明:對于(3),將根據(jù)結(jié)論的完整性與一般性程度給予不同的評分

解:(1)對任意的,有,

當且僅當時,有,     

故存在唯一,滿足,              ……………………2分

所以1是函數(shù)的“均值”.            ……………………4分

(另法:對任意的,有,令

,且,     

,且,則有,可得,

故存在唯一,滿足,              ……………………2分

所以1是函數(shù)的“均值”.            ……………………4分)

(2)當時,存在“均值”,且“均值”為;…………5分

時,由存在均值,可知對任意的,

都有唯一的與之對應(yīng),從而有單調(diào),

故有,解得,         ……………………9分

綜上,a的取值范圍是.            ……………………10分

(另法:分四種情形進行討論)

(3)①當I 時,函數(shù)存在唯一的“均值”.

這時函數(shù)的“均值”為;                       …………………12分

②當I時,函數(shù)存在無數(shù)多個“均值”.

這時任意實數(shù)均為函數(shù)的“均值”;              ……………………14分

③當I 時,

函數(shù)不存在“均值”.                  ……………………16分

[評分說明:若三種情況討論完整且正確,但未用等價形式進行敘述,至多得6分;若三種情況討論不完整,且未用等價形式敘述,至多得5分]

①當且僅當I形如、其中之一時,函數(shù)存在唯一的“均值”.

這時函數(shù)的“均值”為;                      ……………………13分

②當且僅當I時,函數(shù)存在無數(shù)多個“均值”.

這時任意實數(shù)均為函數(shù)的“均值”;              ……………………16分

③當且僅當I形如、、、、、其中之一時,函數(shù)不存在“均值”.                    ……………………18分

(另法:①當且僅當I為開區(qū)間或閉區(qū)間時,函數(shù)存在唯一的“均值”.這時函數(shù)的均值為區(qū)間I兩端點的算術(shù)平均數(shù);                     ……………………13分

②當且僅當I時,函數(shù)存在無數(shù)多個“均值”.這時任意實數(shù)均為函數(shù)的“均值”;                                       ……………………16分

③當且僅當I為除去開區(qū)間、閉區(qū)間與之外的其它區(qū)間時,函數(shù)不存在“均值”.                                              ……………………18分)

評分說明:在情形①與②中,等價關(guān)系敘述正確但未正確求出函數(shù)“均值”,各扣1分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設(shè).

(1)若,,,求方程在區(qū)間內(nèi)的解集;

(2)若點是過點且法向量為的直線上的動點.當時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)

查看答案和解析>>

科目:高中數(shù)學 來源:上海市普陀區(qū)2010屆高三第二次模擬考試理科數(shù)學試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設(shè).
(1)若,,求方程在區(qū)間內(nèi)的解集;
(2)若點是過點且法向量為的直線上的動點.當時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市長寧區(qū)高三教學質(zhì)量測試理科數(shù)學 題型:解答題

(本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

(文)已知數(shù)列中,

(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項公式;

(2)求數(shù)列的前項和

(3)設(shè)數(shù)列的前項和為,若對任意恒成立,求的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市長寧區(qū)高三教學質(zhì)量測試理科數(shù)學 題型:解答題

本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設(shè)函數(shù)是定義域為R的奇函數(shù).

(1)求k值;

(2)(文)當時,試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:上海市普陀區(qū)2010屆高三第二次模擬考試理科數(shù)學試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設(shè).

(1)若,,,求方程在區(qū)間內(nèi)的解集;

(2)若點是過點且法向量為的直線上的動點.當時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)

 

查看答案和解析>>

同步練習冊答案