【題目】根據(jù)《環(huán)境空氣質(zhì)量指數(shù)技術(shù)規(guī)定(試行)》規(guī)定:空氣質(zhì)量指數(shù)在區(qū)間、、、、時(shí),其對(duì)應(yīng)的空氣質(zhì)量狀況分別為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染.如圖為某市2019101日至107日的空氣質(zhì)量指數(shù)直方圖,在這7天內(nèi),下列結(jié)論正確的是( )

A.4的方差小于后3的方差

B.7天內(nèi)空氣質(zhì)量狀況為嚴(yán)重污染的天數(shù)為3

C.7天的平均空氣質(zhì)量狀況為良

D.空氣質(zhì)量狀況為優(yōu)或良的概率為

【答案】D

【解析】

由圖像判斷得到,前4的方差大于后3的方差,可判斷A101日,102日空氣質(zhì)量狀況為嚴(yán)重污染,可判斷B;這7天平均空氣質(zhì)量狀況為中度污染,可判斷C103日和104日空氣質(zhì)量狀況分別為優(yōu)、良,計(jì)算概率可判斷D

由圖易知,前4的方差大于后3的方差,故A錯(cuò);

7天內(nèi),101日,102日空氣質(zhì)量狀況為嚴(yán)重污染,天數(shù)為2,故B錯(cuò);

7天平均空氣質(zhì)量 ,狀況為中度污染,故C錯(cuò);

103日和104日空氣質(zhì)量狀況分別為優(yōu)、良,所以這7天空氣質(zhì)量狀況為優(yōu)或良的概率為,故D正確

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, 邊上的中線長為3,且, .

(1)求的值;

(2)求外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】母線長為,底面半徑為的圓錐內(nèi)有一球,與圓錐的側(cè)面、底面都相切,現(xiàn)放入一些小球,小球與圓錐底面、側(cè)面、球都相切,這樣的小球最多可放入__________個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面.底面是菱形,

(Ⅰ)求證:直線平面;

(Ⅱ)求直線與平面所成角的正切值;

(Ⅲ)已知在線段上,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρasinθa≠0.

1)求圓C的直角坐標(biāo)方程與直線l的普通方程;

2)設(shè)直線l截圓C的弦長是半徑長的倍,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著社會(huì)發(fā)展對(duì)環(huán)保的要求,越來越多的燃油汽車被電動(dòng)汽車取代,為了了解某品牌的電動(dòng)汽車的節(jié)能情況,對(duì)某一輛電動(dòng)汽車“行車數(shù)據(jù)”的兩次記錄如下表:

記錄時(shí)間

累計(jì)里程

(單位:公里)

平均耗電量(單位:公里)

剩余續(xù)航里程

(單位:公里)

202011

5000

0.125

380

202012

5100

0.126

246

(注:累計(jì)里程指汽車從出廠開始累計(jì)行駛的路程,累計(jì)耗電量指汽車從出廠開始累計(jì)消耗的電量,

下面對(duì)該車在兩次記錄時(shí)間段內(nèi)行駛100公里的耗電量估計(jì)正確的是(

A.等于B.之間C.等于D.大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,邊上異于端點(diǎn)的動(dòng)點(diǎn),于點(diǎn),將矩形沿折疊至處,使面.點(diǎn)分別為的中點(diǎn).

1)證明://面;

2)設(shè),當(dāng)x為何值時(shí),四面體的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=fx)和y=gx)在[-2,2]的圖像如圖所示,給出下列四個(gè)命題:

①方程f[gx]=0有且僅有6個(gè)根

②方程g[fx]=0有且僅有3個(gè)根

③方程f[fx]=0有且僅有5個(gè)根

④方程g[gx]=0有且僅有4個(gè)根

其中正確的命題是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求曲線在點(diǎn)處的切線方程;

2)求的單調(diào)區(qū)間;

3)若對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案