【題目】已知數(shù)列的前n項(xiàng)和為且.?dāng)?shù)列為非負(fù)的等比數(shù)列,且滿足,.
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)若數(shù)列的前n項(xiàng)和為,求數(shù)列的前n項(xiàng)和.
【答案】(Ⅰ)..(Ⅱ)
【解析】
(Ⅰ)由已知,及,,可求得,利用,,化簡(jiǎn)可得,即可證得數(shù)列為等差數(shù)列,根據(jù)公式即可求得的通項(xiàng)公式,由數(shù)列為非負(fù)的等比數(shù)列,根據(jù)已知求得,,根據(jù)等比數(shù)列的通項(xiàng)公式即可得解.
(Ⅱ)由(Ⅰ)得,即可知,設(shè),,利用錯(cuò)位相減法即可求得,根據(jù)分組求和即可得解.
解:(Ⅰ)當(dāng)時(shí),,
又因?yàn)?/span>,,所以,
,
則當(dāng)時(shí),,
兩式相減并化簡(jiǎn)得,
所以數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,
所以.
因?yàn)?/span>,所以,
因?yàn)?/span>,,,所以,
所以,又,所以,
所以.
(Ⅱ)由(Ⅰ)得,
所以,
設(shè),
所以,
兩式相減得,
設(shè),
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=15,a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和Tn大于2020的最小自然數(shù)n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某運(yùn)動(dòng)制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對(duì)其身高和臂展進(jìn)行測(cè)量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對(duì)應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體ABCD﹣HKLE中,底面ABCD是邊長(zhǎng)為3的正方形,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)F在線段AH上且,BE與底面ABCD所成角為.
(1)求證:AC⊥BE;
(2)M為線段BD上一點(diǎn),且,求異面直線AM與BF所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F是拋物線C:y2=2px(p>0)的焦點(diǎn),點(diǎn)M(x0,1)在C上,且|MF|=.
(1)求p的值;
(2)若直線l經(jīng)過(guò)點(diǎn)Q(3,-1)且與C交于A,B(異于M)兩點(diǎn),證明:直線AM與直線BM的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)軸長(zhǎng)為的橢圓C:的左、右焦點(diǎn)分別為F1、F2,且以F1、F2為直徑的圓與C恰有兩個(gè)公共點(diǎn).
(1)求橢圓C的方程;
(2)若經(jīng)過(guò)點(diǎn)F2的直線l與C交于M,N兩點(diǎn),且M,N關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)分別為P,Q,求四邊形MNPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若關(guān)于的方程恰有三個(gè)不相等的實(shí)數(shù)解,則的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量=(cosx,sinx),=(cosx,﹣sinx),函數(shù).
(1)若,x(0,),求tan(x+)的值;
(2)若,(,),,(0,),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,四邊形為平行四邊形,,,,,點(diǎn)在線段上,,點(diǎn)在線段,.
(1)證明:平面;
(2)若平面平面,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com