已知函數(shù)f(x)ax3+bx2+cx+d(a≠0),當(dāng)x=1時(shí)有極大值4,當(dāng)x=3時(shí)有極小值0,且函數(shù)圖象過(guò)原點(diǎn),則f(x)的表達(dá)式為

[  ]

A.x3+6x2+9x

B.x3-6x2-9x

C.x3-6x2+9x

D.x3+6x2-9x

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-
3
2
x2
的最大值不大于
1
6
,又當(dāng)x∈[
1
4
,
1
2
]
時(shí),f(x)≥
1
8
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-
3
2
x2
的最大值不大于
1
6
,又當(dāng)x∈[
1
4
,
1
2
]時(shí),f(x)≥
1
8
.

(1)求a的值;
(2)設(shè)0<a1
1
2
,an+1=f(an),n∈N+
.證明an
1
n+1
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+bx2+1
在點(diǎn)(-1,f(-1))的切線方程為x+y+3=0.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=lnx,求證:g(x)≥f(x)在x∈[1,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+b-a  (0<1<x)
x-b-1
x-a-1
(1≤x<2)
若  
lim
x→1
f(x)=
1
2
,則f(x)在(0,2)上的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax,x<1
2x,x≥1
,是增函數(shù),則實(shí)數(shù)a的范圍為
(0,2]
(0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案