【題目】一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的表面積為(單位:m2)( )
A. (11+4)π B. (12+4)π C. (13+4)π D. (14+4)π
【答案】B
【解析】由已知中的三視圖,可知該幾何體是一個(gè)圓柱和圓錐組成的組合體,
圓柱的底面直徑為2,故底面周長為2π
圓柱的高為4,故圓柱的側(cè)面積為8π,
圓錐的底面直徑為4,故底面半徑為2,底面面積S=4π,
圓錐的高h=2,故母線長為2,
故圓錐的側(cè)面積為:4π,
組合體的表面積等于圓錐的底面積與圓錐的側(cè)面積及圓柱側(cè)面積的和,
故組合體的表面積S=(12+4)π.選B.
點(diǎn)睛:空間幾何體表面積的求法
(1)以三視圖為載體的幾何體的表面積問題,關(guān)鍵是分析三視圖確定幾何體中各元素之間的位置關(guān)系及數(shù)量.
(2)多面體的表面積是各個(gè)面的面積之和;組合體的表面積注意銜接部分的處理.
(3)旋轉(zhuǎn)體的表面積問題注意其側(cè)面展開圖的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月,來自“一帶一路”沿線的20國青年評(píng)選出了中國的“新四大發(fā)明”:高鐵、掃碼支付、共享單車和網(wǎng)購。為拓展市場,某調(diào)研組對(duì)甲、乙兩個(gè)品牌的共享單車在5個(gè)城市的用戶人數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):
城市 品牌 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(百萬) | 4 | 3 | 8 | 6 | 12 |
乙品牌(百萬) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果共享單車用戶人數(shù)超過5百萬的城市稱為“優(yōu)質(zhì)潛力城市”,否則“非優(yōu)”,請(qǐng)據(jù)此判斷是否有85%的把握認(rèn)為“優(yōu)質(zhì)潛力城市”與共享單車品牌有關(guān)?
(Ⅱ)如果不考慮其它因素,為拓展市場,甲品牌要從這5個(gè)城市中選出3個(gè)城市進(jìn)行大規(guī)模宣傳.
①在城市Ⅰ被選中的條件下,求城市Ⅱ也被選中的概率;
②以表示選中的城市中用戶人數(shù)超過5百萬的個(gè)數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: K2=,n=a+b+c+d
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(ax2+bx+c)ex(a>0)的導(dǎo)函數(shù)y=f′(x)的兩個(gè)零點(diǎn)為-3和0.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)的極小值為-1,求f(x)的極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且在處的切線與直線垂直.
(1)求實(shí)數(shù)值;
(2)若不等式對(duì)任意的實(shí)數(shù)及恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),且數(shù)列的前項(xiàng)和為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程是,將向上平移2個(gè)單位得到曲線.
(1)求曲線的極坐標(biāo)方程;
(2)直線的參數(shù)方程為(為參數(shù)),判斷直線與曲線的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把日均收看體育節(jié)目的時(shí)間超過50分鐘的觀眾稱為“超級(jí)體育迷”,已知5名“超級(jí)體育迷”中有2名女性,若從中任選2名,則至少有1名女性的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若時(shí),關(guān)于的方程有唯一解,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓與軸的非負(fù)半軸交于點(diǎn),過點(diǎn)作互相垂直的兩條直線,分別交橢圓于兩點(diǎn),連接,求的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com