半徑為4的球面上有A、B、C、D四點,且滿足AB⊥CD,AC⊥AD,AD⊥AB,則S△ABC+S△ACD+S△ADB的最大值為(S為三角形的面積)
 
考點:球內(nèi)接多面體
專題:計算題,空間位置關(guān)系與距離
分析:設(shè)AB=a,AC=b,AD=c,根據(jù)AB⊥AC,AC⊥AD,AD⊥AB,可得a2+b2+c2=4R2=64,而S△ABC+S△ACD+S△ADB=
1
2
(ab+ac+bc),利用基本不等式,即可求得最大值.
解答: 解:設(shè)AB=a,AC=b,AD=c,
∵AB⊥AC,AC⊥AD,AD⊥AB,∴a2+b2+c2=4R2=64
∴S△ABC+S△ACD+S△ADB=
1
2
(ab+ac+bc)≤
1
2
(a2+b2+c2)=32
∴S△ABC+S△ACD+S△ADB的最大值為32.
故答案為:32.
點評:本題考查了球內(nèi)接多面體、利用基本不等式求最值問題,考查了同學(xué)們綜合解決交匯性問題的能力,解答關(guān)鍵是利用構(gòu)造法求球的直徑得到a2+b2+c2=64.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?φ∈R,使f(x)=sin(x+φ)為偶函數(shù);命題q:函數(shù)y=tanx在(
π
2
,π)上單調(diào)遞減,則下列命題為真命題的是( 。
A、p∧q
B、(¬p)∨q
C、(¬p)∧(¬q)
D、(¬p)∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是以1為首項的等比數(shù)列,若a7•a11=100,則a9的值是(  )
A、-10B、10
C、±10D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱柱的側(cè)棱與底面垂直,且底面是邊長為2的等邊三角形,其正視圖(如圖所示)的面積為8,則該三棱柱左視圖的面積為( 。
A、2
3
B、
4
3
3
C、4
3
D、8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(α+
π
6
)=
4
5
(α為銳角),則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正項數(shù)列{an}滿足f(an)=
2
2-an
(an≠2),且{an}的前n項和Sn=
1
4
[3-
2
f(an)
]2
(Ⅰ)求證:{an}是等差數(shù)列;
(Ⅱ)若bn=
an
2n
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足an+1=
1
an2+2
(n∈N*),0<a1
1
2

(Ⅰ)求證:|an+2-an+1|<
1
4
|an+1-an|(n∈N*
(Ⅱ)求證:|an+1-an|<(
1
4
n-1(n∈N*
(Ⅲ)對任意n,m,k∈N*且n>m>k,求證:|am-an|<
4
3
•(
1
4
k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下幾個命題:
①由曲線y=x2與直線y=2x圍成的封閉區(qū)域的面積為
4
3

②已知點A是定圓C上的一個定點,線段AB為圓的動弦,若
OP
=
1
2
OA
+
OB
),O為坐標原點,則動點P的軌跡為圓;
③把5本不同的書分給4個人,每人至少1本,則不同的分法種數(shù)為
A
4
5
A
1
4
=480種.
④若直線l∥平面α,直線l⊥直線m,直線l?平面β,則β⊥α.
其中,正確的命題有
 
.(將所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C所對的邊,A=
π
3
,a=
3
,c=1,則△ABC的面積S=
 

查看答案和解析>>

同步練習(xí)冊答案