19.已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,n∈N*,n≥2),這些球除顏色外全部相同.現(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,…,m+n的抽屜內(nèi),其中第k次取出的球放入編號(hào)為k的抽屜(k=1,2,3,…,m+n).
123m+n
(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;
(2)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(X)是X的數(shù)學(xué)期望,證明E(X)<$\frac{n}{(m+n)(n-1)}$.

分析 (1)設(shè)事件Ai表示編號(hào)為i的抽屜里放的是黑球,則p=p(A2)=P(A2|A1)P(A1)+P(A2|$\overline{{A}_{1}}$)P($\overline{{A}_{1}}$),由此能求出編號(hào)為2的抽屜內(nèi)放的是黑球的概率.
(2)X的所有可能取值為$\frac{1}{n},\frac{1}{n+1}$,…,$\frac{1}{n+m}$,P(x=$\frac{1}{k}$)=$\frac{{C}_{k-1}^{n-1}}{{C}_{m+n}^{n}}$,k=n,n+1,n+2,…,n+m,從而E(X)=$\sum_{k=1}^{n+m}$($\frac{1}{k}•\frac{{C}_{k-1}^{n-1}}{{C}_{n+m}^{n}}$)=$\frac{1}{{C}_{n+m}^{n}}•\sum_{k=n}^{n+m}\frac{{C}_{k-1}^{n-1}}{k}$,由此能證明E(X)<$\frac{n}{(m+n)(n-1)}$.

解答 解:(1)設(shè)事件Ai表示編號(hào)為i的抽屜里放的是黑球,
則p=p(A2)=P(A2|A1)P(A1)+P(A2|$\overline{{A}_{1}}$)P($\overline{{A}_{1}}$)
=$\frac{n-1}{m+n-1}×\frac{n}{m+n}+\frac{n}{m+n-1}×\frac{m}{m+n}$
=$\frac{{n}^{2}-n+mn}{(m+n)(m+n-1)}$=$\frac{n}{m+n}$.
證明:(2)∵X的所有可能取值為$\frac{1}{n},\frac{1}{n+1}$,…,$\frac{1}{n+m}$,
P(x=$\frac{1}{k}$)=$\frac{{C}_{k-1}^{n-1}}{{C}_{m+n}^{n}}$,k=n,n+1,n+2,…,n+m,
∴E(X)=$\sum_{k=1}^{n+m}$($\frac{1}{k}•\frac{{C}_{k-1}^{n-1}}{{C}_{n+m}^{n}}$)=$\frac{1}{{C}_{n+m}^{n}}•\sum_{k=n}^{n+m}\frac{{C}_{k-1}^{n-1}}{k}$
=$\frac{1}{{C}_{n+m}^{n}}•\sum_{k=n}^{n+m}\frac{{C}_{k-1}^{n-1}}{k}$<$\frac{1}{{C}_{n+m}^{n}}•\sum_{k=n}^{n+m}\frac{{C}_{k-1}^{n-1}}{k-1}$=$\frac{1}{{C}_{n+m}^{n}}•\sum_{k=n}^{n+m}\frac{{C}_{k-2}^{n-2}}{n-1}$
=$\frac{1}{(n-1){C}_{n+m}^{n}}$•(${C}_{n-2}^{n-2}+{C}_{n-1}^{n-2}+…+{C}_{n+m-2}^{n-2}$)
=$\frac{1}{(n-1){C}_{m+n}^{n}}•{C}_{m+n-1}^{n-1}$=$\frac{n}{(m+n)(n-1)}$,
∴E(X)<$\frac{n}{(m+n)(n-1)}$.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.兩非零向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=|$\overrightarrow$|,且對(duì)任意的x∈R,都有|$\overrightarrow$+x$\overrightarrow{a}$|≥|$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{a}$|,若|$\overrightarrow{a}$|=2|$\overrightarrow{c}$|,0<λ<1,則$\frac{|\overrightarrow{c}-λ\overrightarrow{a}-(1-λ)\overrightarrow|}{|\overrightarrow{a}|}$的取值范圍是[$\frac{1}{2}$($\sqrt{3}$-1),$\frac{1}{2}$($\sqrt{3}$+1)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)
天數(shù)216362574
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列;
(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量n(單位:瓶)為多少時(shí),Y的數(shù)學(xué)期望達(dá)到最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在平面直角坐標(biāo)系xOy中,雙曲線$\frac{{x}^{2}}{3}$-y2=1的右準(zhǔn)線與它的兩條漸近線分別交于點(diǎn)P,Q,其焦點(diǎn)是F1,F(xiàn)2,則四邊形F1PF2Q的面積是$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺(tái)形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對(duì)角線AC的長(zhǎng)為10$\sqrt{7}$cm,容器Ⅱ的兩底面對(duì)角線EG,E1G1的長(zhǎng)分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長(zhǎng)度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))
(1)將l放在容器Ⅰ中,l的一端置于點(diǎn)A處,另一端置于側(cè)棱CC1上,求l沒(méi)入水中部分的長(zhǎng)度;
(2)將l放在容器Ⅱ中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒(méi)入水中部分的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖程序框圖是為了求出滿足3n-2n>1000的最小偶數(shù)n,那么在兩個(gè)空白框中,可以分別填入( 。
A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(-1,$\frac{{\sqrt{3}}}{2}$),P4(1,$\frac{{\sqrt{3}}}{2}$)中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過(guò)P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為-1,證明:l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)
天數(shù)216362574
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出Y的所有可能值,并估計(jì)Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,$tanA=\frac{1}{4},tanB=\frac{3}{5}$,若△ABC最小邊為$\sqrt{2}$,則△ABC最大邊的邊長(zhǎng)為$\sqrt{17}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案