若集合,且,則集合可能是(    )

A.       B.     C.    D.

 

【答案】

A

【解析】

試題分析:將選項代入驗算易得A.

考點:考查集合的運算.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

9、已知S={1,2,3,…2010},A⊆S且A中有三個元素,若A中的元素可構(gòu)成等差數(shù)列,則這樣的集合A共有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常數(shù)),則稱數(shù)列{an}為二階線性遞推數(shù)列,且定義方程x2=px+q為數(shù)列{an}的特征方程,方程的根稱為特征根; 數(shù)列{an}的通項公式an均可用特征根求得:
①若方程x2=px+q有兩相異實根α,β,則數(shù)列通項可以寫成an=c1αn+c2βn,(其中c1,c2是待定常數(shù));
②若方程x2=px+q有兩相同實根α,則數(shù)列通項可以寫成an=(c1+nc2)αn,(其中c1,c2是待定常數(shù));
再利用a1=m1,a2=m2,可求得c1,c2,進而求得an.根據(jù)上述結(jié)論求下列問題:
(1)當a1=5,a2=13,an+2=5an+1-6an(n∈N*)時,求數(shù)列{an}的通項公式;
(2)當a1=1,a2=11,an+2=2an+1+3an+4(n∈N*)時,求數(shù)列{an}的通項公式;
(3)當a1=1,a2=1,an+2=an+1+an(n∈N*)時,記Sn=a1Cn1+a2Cn2+…+anCnn,若Sn能被數(shù)8整除,求所有滿足條件的正整數(shù)n的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源:設計必修一數(shù)學(人教A版) 人教A版 題型:022

由所有既屬于集合A又屬于集合B的元素所成的集合,叫做A與B的________,記作A∩B,即A∩B={x|x∈A,且x∈B}.

可這樣理解:交集A∩B是由兩集合A與B的“公有”元素所組成的集合.用Venn圖表示,如圖.

易知:(1)若兩集合A與B無公共關系,則A∩B=________;

(2)A∩B________A,A∩B________B;

(3)A∩A=________,A∩=________,A∩B=B∩A;

(4)若AB,則A∩B=________;若A∩B=A,則A________B;

(5)設U為全集,則A∩(A)=________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分18分,第(1)小題6分,第(2)小題6分,第(3)小題6分)

若數(shù)列滿足:是常數(shù)),則稱數(shù)列為二階線性遞推數(shù)列,且定義方程為數(shù)列的特征方程,方程的根稱為特征根; 數(shù)列的通項公式均可用特征根求得:

①若方程有兩相異實根,則數(shù)列通項可以寫成,(其中是待定常數(shù));

②若方程有兩相同實根,則數(shù)列通項可以寫成,(其中是待定常數(shù));

再利用可求得,進而求得

根據(jù)上述結(jié)論求下列問題:

(1)當,)時,求數(shù)列的通項公式;

(2)當,)時,求數(shù)列的通項公式;

(3)當,)時,記,若能被數(shù)整除,求所有滿足條件的正整數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:填空題

給出下列四個結(jié)論:① ;

②已知集合,若,則1

③已知為定義在R上的可導函數(shù),且對于恒成立,則有, ;

④ 若定義在正整數(shù)有序?qū)仙系亩瘮?shù)滿足:(1),(2) (3),則=

則其中正確結(jié)論的有         (填寫你認為正確的序號)

 

查看答案和解析>>

同步練習冊答案