分析 (1)先根據(jù)弦切之間的關(guān)系對tan$\frac{B}{2}+cot\frac{B}{2}=\frac{10}{3}$進行化簡,再由二倍角公式可得到sinB的值,結(jié)合cosA的值可判斷B為銳角,進而由sinC=sin(A+B)根據(jù)兩角和與差的正弦公式和(1)中的sinB,sinA,cosB,cosA的值可求得sinC的值.
(2)再由正弦定理可求得a的值,最后根據(jù)三角形的面積公式可求得答案.
解答 解:(1)由tan$\frac{B}{2}+cot\frac{B}{2}=\frac{10}{3}$=$\frac{si{n}^{2}\frac{B}{2}+co{s}^{2}\frac{B}{2}}{sin\frac{B}{2}cos\frac{B}{2}}$=$\frac{1}{sin\frac{B}{2}cos\frac{B}{2}}$,
得sinB=$\frac{3}{5}$,
∵cosA=$\frac{5}{13}$,∴sinA=$\frac{12}{13}$>sinB,∴B為銳角,可得cosB=$\frac{4}{5}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{12}{13}$×$\frac{4}{5}$+$\frac{5}{13}$×$\frac{3}{5}$=$\frac{63}{65}$.
(2)∵c=21,
∴a=$\frac{csinA}{sinC}$=$\frac{21×\frac{12}{13}}{\frac{63}{65}}$=20,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$×20×21×$\frac{3}{5}$=126.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系、二倍角公式、兩角和與差的公式、正弦定理的應(yīng)用,三角函數(shù)內(nèi)的公式比較多,容易記混,在平時一定要多注意積累,到考試時才能做到游刃有余,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 8 | C. | 11 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 | 4 |
y | 0.5 | 1 | 1.5 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n-1 | B. | 2n-1 | C. | 2×3n-1. | D. | $\frac{1}{2}({{3^n}-1})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com