10.下列選項(xiàng)中是函數(shù)f(x)=sinxcosx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$的零點(diǎn)的是( 。
A.$\frac{π}{3}$B.πC.$\frac{4π}{3}$D.$\frac{2π}{3}$

分析 由題意,利用三角函數(shù)恒等變換的應(yīng)用可得f(x)=sin(2x-$\frac{π}{3}$)=0,從而解得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,比較各個(gè)選項(xiàng)即可得解.

解答 解:∵f(x)=sinxcosx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x=sin(2x-$\frac{π}{3}$),
∴由f(x)=sin(2x-$\frac{π}{3}$)=0,解得:2x-$\frac{π}{3}$=kπ,k∈Z,
∴x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
∴當(dāng)k=1時(shí),可得x=$\frac{2π}{3}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合M={x|$\frac{1}{x}$>1},N={x|x2+2x-3<0},則M∪N=( 。
A.(-∞,-3)B.(-∞,1)C.(-3,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在平面直角坐標(biāo)系xOy中,以x的非負(fù)半軸為始邊作兩個(gè)銳角α,β,它們的終邊分別與單位圓交于點(diǎn)A,B,已知A的橫坐標(biāo)為$\frac{\sqrt{5}}{5}$,B的縱坐標(biāo)為$\frac{\sqrt{2}}{10}$,則2α+β=(  )
A.πB.$\frac{2}{3}$πC.$\frac{5}{6}$πD.$\frac{3}{4}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若f(x)=f′(1)x2+2x,則f(1)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,在正方體ABCD-A1B1C1D中,異面直線A1D與D1C所成的角為60度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若集合A={x|x>-1},則( 。
A.0⊆AB.{0}⊆AC.{0}∈AD.∅∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在等比數(shù)列{an}中,a3=4,a6=32.
(1)求an;
(2)設(shè)bn=log2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,點(diǎn)D在邊AB上,CD⊥BC,AC=5$\sqrt{3}$,CD=5,BD=2AD,則AD的長(zhǎng)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,已知A=60°,AB=2,角A的平分線AD=$\frac{4\sqrt{3}}{3}$,則AC=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案