已知a,b,c為正整數(shù),方程ax2+bx+c=0的兩實根為x1,x2(x1≠x2),且|x1|<1,|x2|<1,則a+b+c的最小值為   
【答案】分析:依題意從而可得x1,x2∈(-1,0),則有結合a,b,c為正整數(shù)可求a+b+c得最小值
解答:解:依題意,可知從而可知x1,x2∈(-1,0),
所以有又a,b,c為正整數(shù),取c=1,則a+1>b⇒a≥b,
所以a2≥b2>4ac=4a⇒a>4.從而a≥5,所以b2>4ac≥20.
又b<5+1=6,所以b=5,因此a+b+c有最小值為11.
下面可證c≥2時,a≥3,從而b2>4ac≥24,所以b≥5.
又a+c>b≥5,所以a+c≥6,所以a+b+c≥11.
綜上可得,a+b+c的最小值為11.
故答案為:11
點評:本題主要考查了一元二次方程的根的分布問題的求解,主要應用了方程的根與系數(shù)的關系及,還考查了一定的運算推理的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質)
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構成?若能,請嘗試探索其構造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源:黃岡重點作業(yè)·高三數(shù)學(下) 題型:013

已知函數(shù)f(x)=3sin2+1,則使得f(x+c)=f(x)恒成立的c的最小正整數(shù)值為

[  ]

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:高中數(shù)學 來源:專項題 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c及一次函數(shù)g(x)=-bx。
(1)若a>b>c,a+b+c=0,設f(x)與g(x)兩圖像交于A,B兩點,當線段AB在x軸上射影為A1B1時,試求|A1B1|的取值范圍;
(2)對于自然數(shù)a,存在一個以a為首項系數(shù)的整系數(shù)二次三項式f(x),使f(x)=0有兩個小于1的不等正根,求a的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市普陀區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為,其中p、q均為整數(shù)且p、q互質)
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構成?若能,請嘗試探索其構造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市普陀區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為,其中p、q均為整數(shù)且p、q互質)
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構成?若能,請嘗試探索其構造方法;若不能,試簡述你的理由.

查看答案和解析>>

同步練習冊答案