【題目】已知圓M過兩點A(1,﹣1),B(﹣1,1),且圓心M在x+y﹣2=0上,
(Ⅰ)求圓M的方程;
(Ⅱ)設P是直線x+y+2=0上的動點.PC,PD是圓M的兩條切線,C,D為切點,求四邊形PCMD面積的最小值.
【答案】(Ⅰ)(x﹣1)2+(y﹣1)2=4;(Ⅱ)最小值為4.
【解析】
(Ⅰ)根據圓心在直線AB的垂直平分線l上求解即可.
(Ⅱ)易得四邊形PCMD面積為S=|PC|r,故轉換為求的最小值再轉換為求的最小值即可.
(Ⅰ)設圓心M(a,b),則a+b﹣2=0①,
又A(1,﹣1),B(﹣1,1),
∴kAB,
∴AB的垂直平分線l的斜率k=1,又AB的中點為O(0,0),
∴l的方程為y=x,而直線l與直線x+y﹣2=0的交點就是圓心M(a,b),
由,解得:,又r=|MA|=2,
∴圓M的方程為(x﹣1)2+(y﹣1)2=4;
(Ⅱ)由切線的性質知:四邊形PCMD的面積S=|PC|r,
四邊形PCMD的面積取最小值時,|PM|最小為圓心M到直線x+y+2=0的距離,
即,得|PC|min=2.
∴四邊形PCMD面積的最小值為4.
科目:高中數學 來源: 題型:
【題目】已知命題p:“方程:表示焦點在x軸上的雙曲線”;命題q:“關于x的不等式x2+2ax+1≥0在R上恒成立”.
(1)若命題p為真命題,求實數a的取值范圍;
(2)若命題“p或q”為真命題,“p且q”為假命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在中,分別是上的點,且,將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)若是的中點,求與平面所成角的大;
(3)線段上是否存在點,使平面與平面垂直?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,過焦點F的直線l與拋物線分別交于A、B兩點,O為坐標原點,且.
(1)求拋物線的標準方程;
(2)對于拋物線上任一點Q,點P(2t,0)都滿足|PQ|≥2|t|,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 : ( )的離心率 ,直線 被以橢圓 的短軸為直徑的圓截得的弦長為 .
(1)求橢圓 的方程;
(2)過點 的直線 交橢圓于 , 兩個不同的點,且 ,求 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(x1,y1),D(x2,y2)其中(x1<x2)是曲線y2=9x(y≥0).上的兩點,A,D兩點在x軸上的射影分別為點B,C且|BC|=3.
(Ⅰ)當點B的坐標為(1,0)時,求直線AD的方程:
(Ⅱ)記△AOD的面積為S1,梯形ABCD的面積為S2,求的范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一列非零向量滿足:,,其中是正數
(1)求數列的通項公式;
(2)求證:當時,向量與的夾角為定值;
(3)當時,把中所有與共線的向量按原來的順序排成一列,記為,令,為坐標原點,求點列的極限點的坐標.(注:若點坐標為,且,則稱點為點列的極限點)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中藥種植基地有兩處種植區(qū)的藥材需在下周一、下周二兩天內采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘.由于下雨會影響藥材品質,基地收益如下表所示:
周一 | 無雨 | 無雨 | 有雨 | 有雨 |
周二 | 無雨 | 有雨 | 無雨 | 有雨 |
收益 | 萬元 | 萬元 | 萬元 | 萬元 |
若基地額外聘請工人,可在周一當天完成全部采摘任務.無雨時收益為萬元;有雨時,收益為萬元.額外聘請工人的成本為萬元.
已知下周一和下周二有雨的概率相同,兩天是否下雨互不影響,基地收益為萬元的概率為.
(Ⅰ)若不額外聘請工人,寫出基地收益的分布列及基地的預期收益;
(Ⅱ)該基地是否應該外聘工人,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在對人們的休閑方式的一次調查中,共調查了110人,其中女性50人,男性60人.女性中有30人主要的休閑方式是看電視,另外20人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外40人主要的休閑方式是運動.
(1)根據以上數據建立一個列聯表;
(2)判斷是否有99%的把握認為性別與休閑方式有關系.
下面臨界值表供參考:
0.10 | 0.05 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
(參考公式:)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com