【題目】已知,其中.

1)當(dāng)時,求函數(shù)單調(diào)遞增區(qū)間;

2)求函數(shù)的圖象在點處的切線方程;

3)是否存在實數(shù)的值,使得上有最大值或最小值,若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

【答案】1;(2;(3)存在,.

【解析】

1)由題意,當(dāng)時,求得,令,即可求解函數(shù)的單調(diào)遞增區(qū)間;

2)由,求得,結(jié)合直線的點斜式方程,即可求解;

3)令,求得,,結(jié)合,分類討論,即可求解.

1)由題意,當(dāng)時,,則,

,解得,

所以函數(shù)的單調(diào)遞增區(qū)間為.

2)由函數(shù),可得

解得,

所以函數(shù)的圖象在點處的切線方程為

.

3)由

可得.

①當(dāng)時,即時,

所以,

所以上單調(diào)遞增,

所以上不存在最大值和最小值.

②當(dāng)時,

設(shè)方程的兩根為

,的變化情況如下表:

0

0

遞增

極大值

遞減

極小值

遞增

當(dāng)時,;

當(dāng)時,.

所以要使上有最大值或最小值,只需滿足,即有解.

所以,

解得.

綜上可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動直線軸交于點,過點作直線,交軸于點,點滿足的軌跡為.

1)求的方程;

2)已知點,點,過作斜率為的直線交,兩點,延長分別交,兩點,記直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于⊙Ox2+y21來說,P是坐標(biāo)系內(nèi)任意一點,點P到⊙O的距離SP的定義如下:若PO重合,SPr;若P不與O重合,射線OP與⊙O的交點為A,SPAP的長度(如圖).

1)直線2x+2y+10在圓內(nèi)部分的點到⊙O的最長距離為_____;

2)若線段MN上存在點T,使得:

①點T在⊙O內(nèi);

P∈線段MN,都有STSP成立.則線段MN的最大長度為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知{an}是等差數(shù)列,其前n項和Snn22n+b1,{bn}是等比數(shù)列,其前n項和Tn,則數(shù)列{ bn +an}的前5項和為( 。

A.37B.-27C.77D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考最大的特點就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這科中自由選擇三門科目作為選考科目.某研究機構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),覺得從某學(xué)校高一年級的名學(xué)生中隨機抽取男生,女生各人進行模擬選科.經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多.

1)請完成下面的列聯(lián)表;

2)估計有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由;

3)現(xiàn)從這名學(xué)生中已經(jīng)選取了男生名,女生名進行座談,從中抽取名代表作問卷調(diào)查,求至少抽到一名女生的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,左、右頂點分別為A,B,點M是橢圓C上異于A,B的一點,直線AMy軸交于點P

(Ⅰ)若點P在橢圓C的內(nèi)部,求直線AM的斜率的取值范圍;

(Ⅱ)設(shè)橢圓C的右焦點為F,點Qy軸上,且∠PFQ=90°,求證:AQBM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個結(jié)論,正確的是(

①質(zhì)檢員從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,每間隔15分鐘抽取一件產(chǎn)品進行某項指標(biāo)檢測,這樣的抽樣是分層抽樣;

②在回歸直線方程中,當(dāng)變量每增加一個單位時,變量增加0.13個單位;

③在頻率分布直方圖中,所有小矩形的面積之和是1

④對于兩個分類變量,求出其統(tǒng)計量的觀測值,觀測值越大,我們認(rèn)為有關(guān)系的把握程度就越大.

A.②④B.②③C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形,,平面底面上的一點.

1)證明:平面平面;

2)若直線平面,且,求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點是曲線上的動點,點的延長線上,且,點的軌跡為

(1)求直線及曲線的極坐標(biāo)方程;

(2)若射線與直線交于點,與曲線交于點(與原點不重合),求的最大值.

查看答案和解析>>

同步練習(xí)冊答案