已知f(x)=2+cos(2x+)的圖象向左平移m個單位(m>0),得到的圖象關于直線x=對稱.

(Ⅰ)求m的最小值.

(Ⅱ)若方程f(x)=p在(0,π)內(nèi)有兩個不相等的實根x1,x2,求實數(shù)p的取值范圍及x1+x2的值.

答案:
解析:

  解:(1)圖像左移個單位得到的函數(shù)表達式為

  

  又該圖像關于直線對稱,

  得到

  

  所以的最小值為

  (2)設,

  則,

  內(nèi)有兩個不相等的實根,

  則內(nèi)有兩個不相等的實根,

  數(shù)形結(jié)合可得,且,

  則

  由圖可知

  即

  


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

已知f(x)x2c,且ff(x)]=f(x21)

(1)g(x)ff(x)],求g(x)的解析式;

(2)φ(x)g(x)λf(x),試問是否存在實數(shù)λ,使φ(x)(-∞,-1)內(nèi)是減函數(shù),并在(1,0)內(nèi)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:黃岡新內(nèi)參·高考(專題)模擬測試卷·數(shù)學 題型:013

已知f(x)=2-6+m(m為常數(shù)),在[-2,2]上有最大值3,那么此函數(shù)在[-2,2]上的最小值為

[  ]

A.-37
B.-29
C.-5
D.-11

查看答案和解析>>

科目:高中數(shù)學 來源:天驕之路中學系列 讀想用 高二數(shù)學(上) 題型:044

已知f(x)=ax2-c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:高考總復習全解 數(shù)學 一輪復習·必修課程。ㄈ私虒嶒灠妫版 人教實驗版 B版 題型:044

已知f(x)=ax2-c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:設計必修五數(shù)學北師版 北師版 題型:044

已知f(x)=ax2-c且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的范圍.

查看答案和解析>>

同步練習冊答案