【題目】已知橢圓的焦距為4,點(diǎn)P(2,3)在橢圓上.

(1)求橢圓C的方程;

(2)過(guò)點(diǎn)P引圓的兩條切線PAPB,切線PA,PB與橢圓C的另一個(gè)交點(diǎn)分別為AB,試問(wèn)直線AB的斜率是否為定值?若是,求出其定值,若不是,請(qǐng)說(shuō)明理由.

【答案】(1);(2)見(jiàn)解析

【解析】

1)由題可得焦點(diǎn)坐標(biāo),利用橢圓的定義可得,由此得到橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)出兩條切線的直線方程,由切線的性質(zhì)可得兩切線的斜率相加0,再設(shè)出,,分別聯(lián)立兩切線與橢圓的方程,利用韋達(dá)定理得到,,的關(guān)系,代入進(jìn)行化簡(jiǎn)即可得到答案。

(1)橢圓C的焦距為4,所以c=2,左焦點(diǎn)F1(﹣2,0),右焦點(diǎn)F2(2,0),

PF1=5,PF2=3,所以2aPF1+PF2=5+3=8,即,則橢圓C的方程為

(2)設(shè)PA ,則,所以

設(shè)PB,則,所以

所以,為方程的兩根,即

設(shè),聯(lián)立

,

同理聯(lián)立,可得:,

故直線AB的斜率是定值,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實(shí)數(shù)的最大值;

(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)拋物線的準(zhǔn)線軸交于橢圓的右焦點(diǎn)的左焦點(diǎn).橢圓的離心率為,拋物線與橢圓交于軸上方一點(diǎn),連接并延長(zhǎng)其交于點(diǎn), 上一動(dòng)點(diǎn),且在之間移動(dòng).

(1)當(dāng)取最小值時(shí),求的方程;

(2)若的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù),當(dāng)面積取最大值時(shí),求面積最大值以及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若曲線x1處的切線為y2x3,求實(shí)教a,b的值.

(2)若a0,且2對(duì)一切正實(shí)數(shù)x值成立,求實(shí)數(shù)b的取值范圍.

(3)若b4,求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)求函數(shù)圖像在處的切線方程;

2)證明:;

3)若不等式對(duì)于任意的均成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,函數(shù)F(x)=f(x)﹣b有四個(gè)不同的零點(diǎn)x1,x2,x3,x4,且滿足:x1<x2<x3<x4,則的取值范圍是( )

A.[,+∞)B.(3,]C.[3,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫(xiě)出曲線的直角坐標(biāo)方程,并求時(shí)直線的普通方程;

(2)直線和曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國(guó)歷史上一部影響巨大的著作.卷八中第33問(wèn):“今有三角果一垛,底闊每面七個(gè).問(wèn)該若干?”如圖是解決該問(wèn)題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字,記為,再由乙猜甲剛才想的數(shù)字把乙猜的數(shù)字記為,且,若,則稱(chēng)甲乙“心有靈犀”,現(xiàn)任意找兩個(gè)人玩這個(gè)游戲,得出他們“心有靈犀”的概率為________

查看答案和解析>>

同步練習(xí)冊(cè)答案