8.函數(shù)f(x)=2sin(2x+$\frac{π}{3}$),g(x)=mcos(2x-$\frac{π}{6}$)-2m+3(m>0),若對(duì)任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立,則實(shí)數(shù)m的取值范圍是( 。
A.$(1,\frac{4}{3})$B.$(\frac{2}{3},1]$C.$[\frac{2}{3},1]$D.$[1,\frac{4}{3}]$

分析 由題意可得,當(dāng)x∈[0,$\frac{π}{4}$]時(shí),g(x)的值域是f(x)的值域的子集,由此列出不等式組,求得m的范圍.

解答 解:當(dāng)x∈[0,$\frac{π}{4}$]時(shí),2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{5π}{6}$],sin(2x+$\frac{π}{3}$)∈[$\frac{1}{2}$,1],
f(x)=2sin(2x+$\frac{π}{3}$)∈[1,2],
同理可得2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{π}{3}$],cos(2x-$\frac{π}{6}$)∈[$\frac{1}{2}$,1],
g(x)=mcos(2x-$\frac{π}{6}$)-2m+3∈[-$\frac{3m}{2}$+3,-m+3],
對(duì)任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立,
∴$\left\{\begin{array}{l}{-\frac{3m}{2}+3≥1}\\{-m+3≤2}\end{array}\right.$,求得1≤m≤$\frac{4}{3}$,
故選:D.

點(diǎn)評(píng) 本題考查兩角和與差的正弦函數(shù),著重考查三角函數(shù)的性質(zhì)的運(yùn)用,考查二倍角的余弦,解決問(wèn)題的關(guān)鍵是理解對(duì)任意x1∈[0,$\frac{π}{4}$],總存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立的含義,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.函數(shù)f(x)=x|x-a|-2x+a2,若a∈[-2,4],求函數(shù)在[-3,3]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x2+bx+c,且f(1+x)=f(1-x),f(0)=-2.
(1)求f(x)的解析式;
(2)已知a∈R,p:當(dāng)0<x<1時(shí),不等式f(x)+3<2x+a恒成立;q:當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-ax是單調(diào)函數(shù),若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.四棱錐P-ABCD的底面ABCD是矩形,側(cè)面PAD⊥平面ABCD,∠APD=120°,AB=PA=PD=2,則該四棱錐P-ABCD的外接球的體積為$\frac{20\sqrt{5}}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若規(guī)定$|\begin{array}{l}{a}&\\{c}&oei44ms\end{array}|$=ad-bc,則$|\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}|$=_-2,不等式1<$|\begin{array}{l}{2x}&{1}\\{1}&{x}\end{array}|$<7的解集為(-2,-1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x2+ax+2.
(Ⅰ)求實(shí)數(shù)a的值,使函數(shù)y=f(x)在區(qū)間[-5,5]上為偶函數(shù);
(Ⅱ)求實(shí)數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù);
(Ⅲ)求f(x)在區(qū)間[-5,5]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x3-3x+1
(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)求曲線在點(diǎn)(0,f(0))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在一個(gè)暗箱中裝有5個(gè)手感、材質(zhì)、大小都相同的球,其中有3個(gè)黑球,2個(gè)白球.
(1)如果不放回地依次抽取2個(gè)球,則在第1次抽到黑球的條件下,第2次抽到黑球的概率.
(2)如果從暗箱中任取2球,求在已知其中一個(gè)球?yàn)楹谇虻臈l件下,另一個(gè)球也是黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)不等式組$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到點(diǎn)(1,1)的距離大于1的概率是(  )
A.$\frac{4-π}{4}$B.$\frac{π-2}{2}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案