設(shè)f(x)是一次函數(shù),f(8)=15,且f(2)、f(5)、f(14)成等比數(shù)列,令,則Sn=   
【答案】分析:先通過(guò)條件求出函數(shù)f(x)的表達(dá)式,進(jìn)而利用求和公式求和.
解答:解:因?yàn)閒(x)是一次函數(shù),所以設(shè)f(x)=ax+b,(a≠0)因?yàn)閒(8)=15,所以f(8)=8a+b=15     ①
 又f(2)、f(5)、f(14)成等比數(shù)列,所以f(2)f(14)=f2(5),即(2a+b)(14a+b)=(5a+b)2   ②
兩式聯(lián)立解得a=2,b=-1,即f(x)=2x-1.
則f(n)=2n-1,是首項(xiàng)為f(1)=1,公差為2的等差數(shù)列.
所以Sn=n+=n2
故答案為:n2
點(diǎn)評(píng):本題考查利用待定系數(shù)法求函數(shù)的表達(dá)式,等比數(shù)列的性質(zhì)以及等差數(shù)列的前n項(xiàng)和公式.考查學(xué)生的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定區(qū)間(a,b),定義其區(qū)間長(zhǎng)度為b-a.設(shè)f(x)是一次函數(shù),且滿足f(0)=-5,f[f(0)]=-15,若不等式f(x)f(m-x)>0的解集形成的區(qū)間長(zhǎng)度為2,則實(shí)數(shù)m的所有可能取值為
3或7
3或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是一次函數(shù),f(0)、f(3)、f(24)成等比數(shù)列,且f(0)>0,函數(shù)f(x)的圖象與二次函數(shù)y=x2+6的圖象有且只有一個(gè)公共點(diǎn).
(Ⅰ)求f(x)的解析式:
(Ⅱ)設(shè)g(x)=mx2+4mx-f(x),若g(x)在區(qū)間[1,4]上是減函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•紹興一模)設(shè)f(x)是一次函數(shù),f(8)=15,且f(2)、f(5)、f(14)成等比數(shù)列,令Sn=f(1)+f(2)+…+f(n),n∈N*,則Sn=
n2
n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省鹽城中學(xué)高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

給定區(qū)間(a,b),定義其區(qū)間長(zhǎng)度為b-a.設(shè)f(x)是一次函數(shù),且滿足f(0)=-5,f[f(0)]=-15,若不等式f(x)f(m-x)>0的解集形成的區(qū)間長(zhǎng)度為2,則實(shí)數(shù)m的所有可能取值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年重慶八中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)f(x)是一次函數(shù),f(0)、f(3)、f(24)成等比數(shù)列,且f(0)>0,函數(shù)f(x)的圖象與二次函數(shù)y=x2+6的圖象有且只有一個(gè)公共點(diǎn).
(Ⅰ)求f(x)的解析式:
(Ⅱ)設(shè)g(x)=mx2+4mx-f(x),若g(x)在區(qū)間[1,4]上是減函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案