【題目】已知函數(shù),g(x)=b(x﹣1),其中a≠0,b≠0
(1)若a=b,討論F(x)=f(x)﹣g(x)的單調(diào)區(qū)間;
(2)已知函數(shù)f(x)的曲線與函數(shù)g(x)的曲線有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,證明:.
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】
(1)求導(dǎo)得,按照a>0、 a<0討論的正負(fù)即可得解;
(2)設(shè)x1>x2,轉(zhuǎn)化條件得,令,,只需證明即可得證.
(1)由已知得,
∴,
當(dāng)0<x<1時(shí),∵1﹣x2>0,﹣lnx>0,∴1﹣x2﹣lnx>0,;
當(dāng)x>1時(shí),∵1﹣x2<0,﹣lnx<0,∴1﹣x2﹣lnx<0.
故若a>0,F(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減;
故若a<0,F(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.
(2)不妨設(shè)x1>x2,依題意,
∴,同理得
由①﹣②得,∴,
∴,
∴,
故只需證,
取∴,即只需證明,成立,
即只需證,成立,
∵,
∴p(t)在區(qū)間[1,+∞)上單調(diào)遞增,
∴p(t)>p(1)=0,t>1成立,
故原命題得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
(I)討論的單調(diào)性;
(II)若有兩個(gè)極值點(diǎn)和,記過(guò)點(diǎn)的直線的斜率為,問(wèn):是否存在,使得?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
某投資公司在2010年年初準(zhǔn)備將1000萬(wàn)元投資到“低碳”項(xiàng)目上,現(xiàn)有兩個(gè)項(xiàng)目供選擇:
項(xiàng)目一:新能源汽車.據(jù)市場(chǎng)調(diào)研,投資到該項(xiàng)目上,到年底可能獲利,也可能虧損,且這兩種情況發(fā)生的概率分別為和;
項(xiàng)目二:通信設(shè)備.據(jù)市場(chǎng)調(diào)研,投資到該項(xiàng)目上,到年底可能獲利,可能虧損,也可能不賠不賺,且這三種情況發(fā)生的概率分別為、和
(Ⅰ)針對(duì)以上兩個(gè)投資項(xiàng)目,請(qǐng)你為投資公司選擇一個(gè)合理的項(xiàng)目,并說(shuō)明理由;
(Ⅱ)若市場(chǎng)預(yù)期不變,該投資公司按照你選擇的項(xiàng)目長(zhǎng)期投資(每一年的利潤(rùn)和本金繼續(xù)用作投資),問(wèn)大約在哪一年的年底總資產(chǎn)(利潤(rùn)+本金)可以翻一番?
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,(t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ,
(1)求直線l的普通方程及曲線C的直角坐標(biāo)方程;
(2)直線l與x軸交于點(diǎn)P,與曲線C交于A,B兩點(diǎn),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖,已知橢圓E:的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為、.設(shè)直線傾斜角的余弦值為,圓與以線段為直徑的圓關(guān)于直線對(duì)稱.
(1)求橢圓E的離心率;
(2)判斷直線與圓的位置關(guān)系,并說(shuō)明理由;
(3)若圓的面積為,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅原理“冪勢(shì)既同,則積不容異”中的“冪”指面積,“勢(shì)”即是高,意思是:若兩個(gè)等高的幾何體在所有等高處的水平截面的面積恒等,則這兩幾何體的體積相等.設(shè)夾在兩個(gè)平行平面之間的幾何體的體積分別為,它們被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為,則“恒成立”是“”的( )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè)θ∈[0,π],且f(θ)1,求θ的值;
(2)在△ABC中,AB=1,f(C)1,且△ABC的面積為,求sinA+sinB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的多面體中,平面,,,且,點(diǎn)是的中點(diǎn).
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com