(理)如圖,在四棱錐中,ABCD是矩形,,

,   點的中點,點上移動。

(1)當點的中點時,試判斷與平面的關系,

并說明理由;(2)求證:

  (1)略(2)略


解析:

(1)當點的中點時,! 2分

理由如下:分別為、PD的中點,。4分

,  6分

(2)    

, …10分

    ,點的中點 

  又 12分  … 14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(09年臨沭縣模塊考試理)(12分)

       如圖,在四棱錐SABCD中,底面ABCD是邊長為1的菱形,∠ABC=,SA⊥底面

       ABCDSA=2,M 的為SA的中點,N在線段BC上。

   (Ⅰ)當為何值時,MN∥平面SCD;(說明理由)。

   (Ⅱ)求MD和平面SCD所成角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年西工大附中理)如圖,在四棱錐中,底面是一直角梯形,,,,且平面,與底面成角.

(Ⅰ) 求證:平面平面;

(Ⅱ) 求二面角的大;

      (Ⅲ) 若,為垂足,求異面直線所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(06年重慶卷理)(13分)

 如圖,在四棱錐中,底面ABCD,為直角,,E、F分別為、中點。

     (I)試證:平面;

     (II)高,且二面角 的平面角大小,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年重點中學模擬理)  (12分)如圖,在四棱錐P―ABCD中,PA⊥平面ABCD,四邊形ABCD為直角梯形,AD//BC且AD>BC,∠DAB=∠ABC=90°,PA=,AB=BC=1。M為PC的中點。

   (1)求二面角M―AD―C的大。

   (2)如果∠AMD=90°,求線段AD的長。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(04年天津卷理)(12分)

   如圖,在四棱錐中,底面ABCD是正方形,側棱底面ABCD,,E是PC的中點,作交PB于點F。

      (I)證明 平面;

      (II)證明平面EFD;

      (III)求二面角的大小。

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案