【題目】已知橢圓:與軸交于,兩點(diǎn),為橢圓的左焦點(diǎn),且是邊長(zhǎng)為2的等邊三角形.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)的直線(xiàn)與橢圓交于不同的兩點(diǎn),,點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(與,都不重合),判斷直線(xiàn)與軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.
【答案】(1);(2),證明見(jiàn)詳解
【解析】
(1)由題意可得,由△是邊長(zhǎng)為2的等邊三角形,可得,,進(jìn)而得到橢圓方程;
(2)設(shè)出直線(xiàn)的方程和,的坐標(biāo),則可知的坐標(biāo),進(jìn)而表示出的直線(xiàn)方程,再聯(lián)立方程與橢圓方程,即可把代入求得,結(jié)合韋達(dá)定理進(jìn)行化簡(jiǎn),進(jìn)而得出直線(xiàn)與軸交于定點(diǎn).
(1)由題意可得,,,
,
由△是邊長(zhǎng)為2的等邊三角形,可得,
,即,
則橢圓的方程為;
(2)由題可知直線(xiàn)的斜率不為0,故設(shè)直線(xiàn)的方程為:,
聯(lián)立,
得,即(),
設(shè),,,,則,,
又,,
經(jīng)過(guò)點(diǎn),,,的直線(xiàn)方程為,
令,則,
又,.
當(dāng)時(shí),.
故直線(xiàn)與軸交于定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天氣預(yù)報(bào)說(shuō),今后三天每天下雨的概率相同,現(xiàn)用隨機(jī)模擬的方法預(yù)測(cè)三天中有兩天下雨的概率,用骰子點(diǎn)數(shù)來(lái)產(chǎn)生隨機(jī)數(shù).依據(jù)每天下雨的概率,可規(guī)定投一次骰子出現(xiàn)1點(diǎn)和2點(diǎn)代表下雨;投三次骰子代表三天;產(chǎn)生的三個(gè)隨機(jī)數(shù)作為一組.得到的10組隨機(jī)數(shù)如下:613,265,114,236,561,435,443,251,154,353.則在此次隨機(jī)模擬試驗(yàn)中,每天下雨的概率的近似值是__________,三天中有兩天下雨的概率的近似值為__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的右焦點(diǎn)為,且短軸長(zhǎng)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)為橢圓與軸正半軸的交點(diǎn),是否存在直線(xiàn),使得交橢圓于兩點(diǎn),且恰是的垂心?若存在,求的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤(pán)游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂(lè),要么不出現(xiàn)音樂(lè);每盤(pán)游戲擊鼓三次后,出現(xiàn)一次音樂(lè)獲得10分,出現(xiàn)兩次音樂(lè)獲得20分,出現(xiàn)三次音樂(lè)獲得100分,沒(méi)有出現(xiàn)音樂(lè)則扣除200分(即獲得分).設(shè)每次擊鼓出現(xiàn)音樂(lè)的概率為,且各次擊鼓出現(xiàn)音樂(lè)相互獨(dú)立.
(1)設(shè)每盤(pán)游戲獲得的分?jǐn)?shù)為,求的分布列;
(2)玩三盤(pán)游戲,至少有一盤(pán)出現(xiàn)音樂(lè)的概率是多少?
(3)玩過(guò)這款游戲的許多人都發(fā)現(xiàn),若干盤(pán)游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒(méi)有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”、“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如圖所示:
等級(jí) | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | 24 |
(Ⅰ)求, , 的值;
(Ⅱ)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人這任選4人,記所選4人的量化總分為,求的分布列及數(shù)學(xué)期望;
(Ⅲ)某評(píng)估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來(lái)評(píng)估該校安全教育活動(dòng)的成效.若,則認(rèn)定教育活動(dòng)是有效的;否則認(rèn)定教育活動(dòng)無(wú)效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)令,當(dāng)時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的圓上運(yùn)動(dòng),PA⊥平面ABC,且PA=AC,D,E分別是PC,PB的中點(diǎn).
(1)求證:PC⊥平面ADE.
(2)若二面角C﹣AE﹣B為60°,求直線(xiàn)AB與平面ADE所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某公園內(nèi)有一塊矩形綠地區(qū)域ABCD,已知AB=100米,BC=80米,以AD,BC為直徑的兩個(gè)半圓內(nèi)種植花草,其它區(qū)域種值苗木. 現(xiàn)決定在綠地區(qū)域內(nèi)修建由直路BN,MN和弧形路MD三部分組成的觀(guān)賞道路,其中直路MN與綠地區(qū)域邊界AB平行,直路為水泥路面,其工程造價(jià)為每米2a元,弧形路為鵝卵石路面,其工程造價(jià)為每米3a元,修建的總造價(jià)為W元. 設(shè).
(1)求W關(guān)于的函數(shù)關(guān)系式;
(2)如何修建道路,可使修建的總造價(jià)最少?并求最少總造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】基于移動(dòng)網(wǎng)絡(luò)技術(shù)的共享單車(chē)被稱(chēng)為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),給人們帶來(lái)新的出行體驗(yàn),某共享單車(chē)運(yùn)營(yíng)公司的市場(chǎng)研究人員為了了解公司的經(jīng)營(yíng)狀況,對(duì)公司最近6個(gè)月的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)請(qǐng)用相關(guān)系數(shù)說(shuō)明能否用線(xiàn)性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請(qǐng)計(jì)算出關(guān)于的線(xiàn)性回歸方程,如果不能,請(qǐng)說(shuō)明理由;
(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車(chē)擴(kuò)大市場(chǎng),從成本1000元/輛的型車(chē)和800元/輛的型車(chē)中選購(gòu)一種,兩款單車(chē)使用壽命頻數(shù)如下表:
車(chē)型 報(bào)廢年限 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
經(jīng)測(cè)算,平均每輛單車(chē)每年能為公司帶來(lái)500元的收入,不考慮除采購(gòu)成本以外的其它成本,假設(shè)每輛單車(chē)的使用壽命都是整數(shù)年,用頻率估計(jì)每輛車(chē)使用壽命的概率,以平均每輛單車(chē)所產(chǎn)生的利潤(rùn)的估計(jì)值為決策依據(jù),如果你是公司負(fù)責(zé)人,會(huì)選擇哪款車(chē)型?
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù),,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com