已知函數(shù)數(shù)學(xué)公式(a>0,a≠1),
(1)若a>1,且關(guān)于x的方程f(x)=m有兩個(gè)不同的正數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè)函數(shù)g(x)=f(-x),x∈[-2,+∞),g(x)滿(mǎn)足如下性質(zhì):若存在最大(。┲,則最大(。┲蹬ca無(wú)關(guān).試求a的取值范圍.

解:(1)令ax=t,x>0,
∵a>1,所以t>1,
∴關(guān)于x的方程f(x)=m有兩個(gè)不同的正數(shù)解
轉(zhuǎn)化為:方程有相異的且均大于1的兩根,

解得,
故實(shí)數(shù)m的取值范圍是
(2)g(x)=a|x|+2ax,x∈[-2,+∞)
①當(dāng)a>1時(shí),
x≥0時(shí),ax≥1,g(x)=3ax,所以g(x)∈[3,+∞),
-2≤x<0時(shí),,g(x)=a-x+2ax,所以
ⅰ當(dāng)時(shí),對(duì)?x∈(-2,0),g′(x)>0,所以g(x)在[-2,0)上遞增,
所以,
綜上:g(x)有最小值為與a有關(guān),不符合(10分)
ⅱ當(dāng)時(shí),由g′(x)=0得,
且當(dāng)時(shí),g′(x)<0,
當(dāng)時(shí),g′(x)>0,
所以g(x)在上遞減,在上遞增,
所以=,
綜上:g(x)有最小值為與a無(wú)關(guān),符合要求.
②當(dāng)0<a<1時(shí),
a)x≥0時(shí),0<ax≤1,g(x)=3ax,所以g(x)∈(0,3]
b)-2≤x<0時(shí),,g(x)=a-x+2ax,
所以<0,g(x)在[-2,0)上遞減,
所以,
綜上:a)b)g(x)有最大值為與a有關(guān),不符合
綜上所述,實(shí)數(shù)a的取值范圍是
分析:(1)令ax=t,將“方程f(x)=m有兩個(gè)不同的正數(shù)解”轉(zhuǎn)化為:“關(guān)于t的方程有相異的且均大于1的兩根”,即關(guān)于t的方程t2-mt+2=0有相異的且均大于1的兩根,求解.
(2)根據(jù)題意有g(shù)(x)=a|x|+2ax,x∈[-2,+∞),根據(jù)指數(shù)函數(shù),分①當(dāng)a>1時(shí),②當(dāng)0<a<1時(shí),兩種情況分析,每種情況下,根據(jù)絕對(duì)值,再按照x≥0時(shí)和-2≤x<0兩種情況討論.最后綜合取并集.
點(diǎn)評(píng):本題主要考查了函數(shù)與方程的綜合運(yùn)用,主要涉及了方程的根,函數(shù)的最值等問(wèn)題,還考查了分類(lèi)討論思想,轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、已知函數(shù)y=f(x)(定義域?yàn)镈,值域?yàn)锳)有反函數(shù)y=f--1(x),則方程f(x)=0有解x=a,且f(x)>x(x∈D)的充要條件是y=f--1(x)滿(mǎn)足
f--1(0)=a,且f--1(x)<x(x∈A)/y=f--1(x)的圖象在直線y=x的下方,且與y軸的交點(diǎn)為(0,a)…

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式(a>0且a≠1).
(1)求f(x)的表達(dá)式,寫(xiě)出其定義域,并判斷奇偶性;
(2)求f-1(x)的表達(dá)式,并指出其定義域;
(3)判斷f-1(x)單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濰坊市三縣市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A也在函數(shù)f(x)=3x+b的圖象上,則b=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆福建省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分)已知函數(shù)其中a>0,且a≠1,

(1)求函數(shù)的定義域;

(2)當(dāng)0<a<1時(shí),解關(guān)于x的不等式;

(3)當(dāng)a>1,且x∈[0,1)時(shí),總有恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年陜西省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

(12分) 已知函數(shù)=loga(a>0且a≠1)是奇函數(shù)

(1)求,(

(2)討論在(1,+∞)上的單調(diào)性,并予以證明

 

查看答案和解析>>

同步練習(xí)冊(cè)答案