(2013•成都模擬)在△ABC中,角A,B,C所對的邊分別是a,b,c,滿足acosC=(2b-c)cosA
(1)求角A;
(2)若a=3,求△ABC面積S的最大值.
分析:(1)由正弦定理化簡已知的等式,利用兩角和與差的正弦函數(shù)公式變形后,根據(jù)sinB的值不為0,得出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);
(2)由a及cosA的值,利用余弦定理列出關(guān)系式,再利用基本不等式變形求出bc的最大值,最后由bc的最大值及sinA的值,利用三角形的面積公式即可求出三角形ABC面積的最大值.
解答:解:(1)利用正弦定理
a
sinA
=
b
sinB
=
c
sinC
化簡已知的等式得:
sinAcosC=(2sinB-sinC)cosA,即sinAcosC+cosAsinC=2sinBcosA,
∴sin(A+C)=sinB=2sinBcosA,
∵B為三角形的內(nèi)角,即sinB≠0,
∴cosA=
1
2
,又A為三角形的內(nèi)角,
則A=
π
3
;
(2)∵a=3,cosA=
1
2
,
∴由余弦定理a2=b2+c2-2bccosA,得:9=b2+c2-bc≥2bc-bc,
∴bc≤9,
∴S△ABC=
1
2
bcsinA≤
9
3
4

則△ABC面積S的最大值為
9
3
4
點評:此題考查了正弦、余弦定理,三角形的面積公式,基本不等式的運用,以及兩角和與差的正弦函數(shù)公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•成都模擬)函數(shù)f(x)的定義域為D,若存在閉區(qū)間[m,n]⊆D,使得函數(shù)f(x)滿足:①f(x)在[m,n]上是單調(diào)函數(shù);②f(x)在[m,n]上的值域為[2m,2n],則稱區(qū)間[m,n]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有
①③④
①③④
(填上所有正確的序號)
①f(x)=x2(x≥0);②f(x)=ex(x∈R);③f(x)=
4x
x2+1
(x≥0)
;④f(x)=loga(ax-
1
8
)(a>0,a≠1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•成都模擬)某大學對1000名學生的自主招生水平測試成績進行統(tǒng)計,得到樣本頻率分布直方圖(如圖),則這1000名學生在該次自主招生水平測試中不低于70分的學生數(shù)是
600
600

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•成都模擬)已知向量
.
m
=(
3
sin
x
4
,1),
.
n
=(cos
x
4
,cos2
x
4
),f(x)=
.
m
.
n

(1)若f(x)=1,求cos(x+
π
3
)的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c且滿足acosC+
1
2
c=b,求函數(shù)f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•成都模擬)若實數(shù)x,y滿足條件
x+y≥0
x-y+3≥0
0≤x≤3
,則z=2x-y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•成都模擬)設函數(shù)f(x)=
-x,x≤0
x2,x>0
,若f(α)=4,則實數(shù)α為
-4或2
-4或2

查看答案和解析>>

同步練習冊答案