精英家教網(wǎng)已知A,B是單位圓上的兩點,O為圓心,且∠AOB=120°,MN是圓O的一條直徑,點C在圓內(nèi),且滿足
OC
OA
+(1-λ)
OB
(0<λ<1).
(Ⅰ)求證:點C在線段AB上;
(Ⅱ)求
CM
CN
的取值范圍.
分析:(Ⅰ)由于
OC
OA
+(1-λ)
OB
(0<λ<1),可得
OC
-
OB
=λ(
OA
-
OB
)
,即
BC
BA
,由于0<λ<1,可得
BC
,
BA
同向平行,且|
BC
|<|
BA
|
,即可證明.
(Ⅱ)利用向量的數(shù)量積運算可得
CM
CN
=(
OM
-
OC
)•(
ON
-
OC
)
=
OM
ON
-
OC
•(
OM
+
ON
)+
OC
2
=-1+
OC
2
.由于∠AOB=120°,點C在線段AB上,可得|
OC
|∈[
1
2
,1)
,即可得出.
解答:(Ⅰ)證明:∵
OC
OA
+(1-λ)
OB
(0<λ<1),
OC
-
OB
=λ(
OA
-
OB
)
,即
BC
BA

∵0<λ<1,
BC
BA
同向平行,且|
BC
|<|
BA
|
,
∴點C在線段AB上;
(Ⅱ)解:
CM
CN
=(
OM
-
OC
)•(
ON
-
OC
)
=
OM
ON
-
OC
•(
OM
+
ON
)+
OC
2
=-1+
OC
2

∵∠AOB=120°,點C在線段AB上;
|
OC
|∈[
1
2
,1)
,
CM
CN
∈[-
3
4
,0)
點評:本題考查了向量數(shù)量積運算和共線定理,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•聊城一模)已知A,B是單位圓(O為圓心)上的兩個定點,且∠AOB=60°,若C為該圓上的動點,且
OC
=x
OA
+y
OB
(x,y∈R)
,則xy的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B是單位圓O上的動點,且A、B分別在第一、二象限,C是圓O與x軸正半軸的交點,△AOB為等腰直角三角形,記∠AOC=α.
(1)求A點的坐標為(
3
5
,
4
5
),求
sin2α+sin2α
cos2α+cos2α
的值;
(2)求|BC|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B是單位圓上的兩點,O為圓心,且∠AOB=120°,MN是圓O的一條直徑,點C在圓內(nèi),且滿足
OC
OA
+(1-λ)
OB
(0<λ<1),則
CM
?
CN
的取值范圍是(  )
A、[-
1
2
,1)
B、[-1,1)
C、[-
3
4
,0)
D、[-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B是單位圓上的動點,且|AB|=
3
,單位圓的圓心為O,則
OA
?
AB
=( 。
A、-
3
2
B、
3
2
C、-
3
2
D、
3
2

查看答案和解析>>

同步練習冊答案