設(shè)數(shù)列滿足前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.

(1);(2).

解析試題分析:(1)由于數(shù)列的和與通項(xiàng)在一個(gè)等式中,通過(guò)遞推一個(gè)式子即可得到關(guān)于通項(xiàng)的等式,從而發(fā)現(xiàn)是一個(gè)等比數(shù)列,但一定要驗(yàn)證第一項(xiàng)的結(jié)果是否符合;(2)由(1)可得,從而,采用分組求和法:是等差數(shù)列,用等差數(shù)列的求和公式進(jìn)行計(jì)算,而是一個(gè)等差與一個(gè)等比的乘積,故采用錯(cuò)位相減法求和,最后兩個(gè)和之差即可得到數(shù)列的前項(xiàng)和.
試題解析:(1)當(dāng)時(shí),,所以             1分
當(dāng)時(shí),由
所以,也就是         3分
所以數(shù)列的通項(xiàng)公式為                    5分
(2)由(1)可知,所以              6分
則數(shù)列的前項(xiàng)和
            8分
兩式相減,得
               11分
所以數(shù)列的前項(xiàng)和           12分.
考點(diǎn):1.數(shù)列的遞推思想;2.等比數(shù)列的通項(xiàng)公式;3.數(shù)列前項(xiàng)和的計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的各項(xiàng)均滿足,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對(duì)于任意的正數(shù),總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列{an}滿足:a1=1,an+1=3an+2n+1(n∈N*),求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Snn2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,,.證明:數(shù)列是公比為的等比數(shù)列的充要條件是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

各項(xiàng)均為正數(shù)的等比數(shù)列中,
(Ⅰ)求數(shù)列通項(xiàng)公式;
(Ⅱ)若等差數(shù)列滿足,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列{}的前n項(xiàng)和為,
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)若.求不超過(guò)的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),設(shè)曲線在點(diǎn)處的切線與軸的交點(diǎn)為,其中為正實(shí)數(shù).
(1)用表示
(2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)若數(shù)列的前項(xiàng)和,記數(shù)列的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),將函數(shù)在區(qū)間內(nèi)的全部極值點(diǎn)按從小到大的順序排成數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案