(06年上海卷理)(12分)
求函數(shù)=2+的值域和最小正周期.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(06年上海卷理)(14分)在四棱錐P-ABCD中,底面是邊長為2的菱形,∠DAB=60,對角線AC與BD相交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成的角為60.
(1)求四棱錐P-ABCD的體積;
(2)若E是PB的中點(diǎn),求異面直線DE與PA所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年上海卷理)(14分)在四棱錐P-ABCD中,底面是邊長為2的菱形,∠DAB=60,對角線AC與BD相交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成的角為60.
(1)求四棱錐P-ABCD的體積;
(2)若E是PB的中點(diǎn),求異面直線DE與PA所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年上海卷理)(16分)
已知有窮數(shù)列共有2項(xiàng)(整數(shù)≥2),首項(xiàng)=2.設(shè)該數(shù)列的前項(xiàng)和為,且=+2(=1,2,┅,2-1),其中常數(shù)>1.
(1)求證:數(shù)列是等比數(shù)列;
(2)若=2,數(shù)列滿足=(=1,2,┅,2),求數(shù)列的通項(xiàng)公式;
(3)若(2)中的數(shù)列滿足不等式|-|+|-|+┅+|-|+|-|≤4,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年上海卷理)(18分)
已知函數(shù)=+有如下性質(zhì):如果常數(shù)>0,那么該函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)=+(>0)的值域?yàn)?IMG height=21 src='http://thumb.zyjl.cn/pic1/img/20090331/20090331160352008.gif' width=9>6,+∞,求的值;
(2)研究函數(shù)=+(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)=+和=+(常數(shù)>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)=+(是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com