(本小題滿分12分)
已知對于任意實(shí)數(shù)滿足,當(dāng)時(shí),.
(1)求并判斷的奇偶性;
(2)判斷的單調(diào)性,并用定義加以證明;
(3)已知,集合,
集合,若,求實(shí)數(shù)的取值范圍.

(1) 是奇函數(shù) (2) 上是增函數(shù). (3)

解析試題分析:解:(1)令 
                  
,得
 是奇函數(shù)               
(2)函數(shù)上是增函數(shù).                        
證明如下:
設(shè) , ,

(或由(1)得)
上是增函數(shù).            
(3),又,可得,,
=         
,,可得,
所以,實(shí)數(shù)的取值范圍.
考點(diǎn):本試題考查了函數(shù)的奇偶性和單調(diào)性的運(yùn)用。
點(diǎn)評:對于函數(shù)的奇偶性和單調(diào)性是高考考查的重點(diǎn),因此要熟練的運(yùn)用概念,先看定義域,然后看解析式f(x)與f(-x)的關(guān)系來確定奇偶性,同時(shí)結(jié)合抽象函數(shù)的賦值法表示來證明單調(diào)性,需要對于變量合理的變形來證明,這是一個難點(diǎn),要注意積累。屬于難度試題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),

(1)求函數(shù)的解析式,并畫出函數(shù)的圖像。
(2)根據(jù)圖像寫出的單調(diào)區(qū)間和值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù),且方程有兩個實(shí)根.
(1)求函數(shù)的解析式;
(2)設(shè),解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
已知函數(shù),若為定義在R上的奇函數(shù),則(1)求實(shí)數(shù)的值;(2)求函數(shù)的值域;(3)求證:在R上為增函數(shù);(4)若m為實(shí)數(shù),解關(guān)于的不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值,并求出取得最值時(shí)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題13分)已知.
(I)求的單調(diào)增區(qū)間;
(II)若在定義域R內(nèi)單調(diào)遞增,求的取值范圍;
(III)是否存在,使在(-∞,0]上單調(diào)遞減,在[0,+∞)上單調(diào)遞增?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對任意,
① 方程有實(shí)數(shù)根;② 函數(shù)的導(dǎo)數(shù)滿足
(Ⅰ)判斷函數(shù)是否是集合中的元素,并說明理由;
(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/70/e/xnkmu.png" style="vertical-align:middle;" />,則對于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個實(shí)數(shù)根;
(Ⅲ)對任意,且,求證:對于定義域中任意的,,,當(dāng),且時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意正實(shí)數(shù)x,不等式恒成立,求實(shí)數(shù)k的值;
(Ⅲ)求證:.(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)證明:是奇函數(shù);
(2)求的單調(diào)區(qū)間;
(3)寫出函數(shù)圖象的一個對稱中心.

查看答案和解析>>

同步練習(xí)冊答案