已知銳角三角形ABC中,(13分)

(Ⅰ)求證:;

(Ⅱ)設(shè)AB=3,求AB邊上的高

 

【答案】

(1)sin(A+B)= ,sin(A-B)=

sin(A+B)=sinAcosB+sinBcosA=

sin(A- B)=sinAcosB-sinBcosA=

兩式相加相減后可得:sinAcosB= ,sinBcosA=

將兩式相除,可得tanA=2tanB

(2)∵△ABC是銳角三角形

∴0<C<

又A+B=π-C

<A+B<π

∵sin(A+B)=3/5

∴cos(A+B)==-

則tan(A+B)=sin(A+B)/cos(A+B)=-

即(tanA+tanB)/(1-tanAtanB)=-

又tanA=2tanB

∴3tanB/(1-2tan²B)=-

即2tan²B-4tanB-1=0

解得tanB=∵0<B<

∴tanB==1+

【解析】把已知的兩等式分別利用兩角和與差的正弦函數(shù)公式化簡,將化簡后的兩等式組成方程組,兩方程相加相減可得出sinAcosB及cosAsinB的值,兩式相除并利用同角三角函數(shù)間的基本關(guān)系可得到tanA與tanB的關(guān)系,由三角形為銳角三角形,得到C的范圍,根據(jù)三角形的內(nèi)角和定理得出A+B的范圍,由sin(A+B)的值,利用同角三角函數(shù)間的基本關(guān)系求出cos(A+B)的值,再利用同角三角函數(shù)間的基本關(guān)系弦化切求出tan(A+B)的值,然后利用兩角和與差的正切函數(shù)公式化簡tan(A+B),將得出的tanA的關(guān)系式代入得到關(guān)于tanB的方程,求出方程的解即可得到tanB的值

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角三角形ABC中,sin(A+B)=
3
5
,sin(A-B)=
1
5

(Ⅰ)求證:tanA=2tanB;
(Ⅱ)設(shè)AB=3,求AB邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角三角形△ABC內(nèi)角A、B、C對(duì)應(yīng)邊分別為a,b,c.tanA=
3
bc
b2+c2-a2

(Ⅰ)求A的大小;
(Ⅱ)求cosB+cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角三角形ABC中,定義向量
m
=(sinB,-
3
),
n
=(cos2B,4cos2
B
2
-2),且
m
n

(1)求函數(shù)f(x)=sin2xcosB-cos2xsinB的單調(diào)減區(qū)間;
(2)若b=1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角三角形ABC中內(nèi)角A、B、C的對(duì)邊分別為a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(1)求角C的值;
(2)設(shè)函數(shù)f(x)=sin(ωx-
π
6
)-cosω
x
 
 
(ω>0)
,且f(x)圖象上相鄰兩最高點(diǎn)間的距離為π,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•盧灣區(qū)二模)(文)已知銳角三角形ABC的三邊為連續(xù)整數(shù),且角A、B滿足A=2B.
(1)當(dāng)
π
5
<B<
π
4
時(shí),求△ABC的三邊長及角B(用反三角函數(shù)值表示);
(2)求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案