已知圓O:交軸于A,B兩點,曲線C是以為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點連結(jié)PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.
(1)求橢圓C的標準方程;
(2)若點P的坐標為(1,1),求證:直線PQ與圓相切;
(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.
解:(1)橢圓的標準方程為
(2)因為(1,1),所以,所以,所以直線OQ的方程為y=-2x
又橢圓的左準線方程為x=-2,所以點Q(,4)
所以,又,所以,即,故直線與圓相切
(3)當點在圓上運動時,直線與圓保持相切
【解析】本題重點考查橢圓的標準方程,考查直線與圓的位置關(guān)系,解題時要認真審題,合理運用橢圓的幾何性質(zhì).
(1)根據(jù)已知條件得到a,b的關(guān)系,進而求解得到c=1,由此能得到橢圓C的標準方程;
(2)直線PQ的方程為:y=-(x-1)+1,即x+y-2=0,利用點O到直線PQ的距離,可證直線PQ與圓O相切.
(3)假設(shè)存在,當點在圓上運動時,直線與圓保持相切,那么利用相切時斜率的關(guān)系得到坐標關(guān)系進而證明
科目:高中數(shù)學 來源: 題型:
已知圓O:交軸于A,B兩點,曲線C是以為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點,連結(jié)PF,過原點O作直線PF的垂線交直線X=-2于點Q.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點P的坐標為(1,1),求證:直線PQ與圓相切;
(Ⅲ)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知圓O:交軸于A,B兩點,曲線C是以為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點,連結(jié)PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點P的坐標為(1,1),求證:直線PQ與圓相切;
(Ⅲ)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(14分)已知圓O:交軸于A,B兩點,曲線C是以AB為長軸,離心率為的橢圓,其左焦點為F,若P是圓O上一點,連結(jié)PF,過原點O作直線PF的垂線交直線x=-2于點Q.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點P的坐標為(1,1),求證:直線PQ與圓O相切;
(Ⅲ)試探究:當點P在圓O上運動時(不與A、B重合),
直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)
已知圓O:交軸于A,B兩點,曲線C是以為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點,連結(jié)PF,過原點O作直線PF的垂線交直線X=-2于點Q.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點P的坐標為(1,1),求證:直線PQ與圓相切;
(Ⅲ)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com