11.復(fù)數(shù)z滿足zi=1+3i,則復(fù)數(shù)z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)的坐標(biāo)是(3,-1).

分析 把已知等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.

解答 解:由足zi=1+3i,得$z=\frac{1+3i}{i}=\frac{(1+3i)(-i)}{-{i}^{2}}=3-i$,
∴復(fù)數(shù)z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)的坐標(biāo)是(3,-1).
故答案為:(3,-1).

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sinθ+cosθ=$\frac{1}{5}$,θ∈($\frac{π}{2}$,π),求tanθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=x2+ax+b,已知不等式f(x)<0的解集為{x|1<x<3},
(1)若不等式f(x)≥m的解集為R,求實(shí)數(shù)m的取值范圍;
(2)若f(x)≥mx對任意的實(shí)數(shù)x≥2都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.二次函數(shù)y=ax2+bx+c的圖象被x軸所截線段的長度為$\frac{\sqrt{^{2}-4ac}}{|a|}$,二次函數(shù)y=x2+kx+k,k∈[4,6]的圖象被x軸所截線一段長度的取值范圍是[0,2$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線C1:$\frac{y^2}{m+3}$-$\frac{x^2}{m}$=1(m>0)與雙曲線C2:$\frac{x^2}{4}$-$\frac{y^2}{16}$=1有相同的漸近線,則兩個(gè)雙曲線的四個(gè)焦點(diǎn)構(gòu)成的四邊形面積為( 。
A.10B.20C.10$\sqrt{5}$D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.$\frac{{{{({1-i})}^2}}}{{{{({1+i})}^3}}}$=( 。
A.$\frac{i+1}{2}$B.$\frac{i-1}{2}$C.$\frac{1-i}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=$\sqrt{3}$sinx+cosx在x∈R上的最小值等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l1為曲線y=f(x)=x2+x-2在點(diǎn)(1,0)處的切線,l2為該曲線的另外一條切線,且l1⊥l2,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí)f(x)=2x-x2
(1)求函數(shù)f(x)的表達(dá)式并畫出其大致圖象;
(2)若當(dāng)x∈[a,b]時(shí),f(x)∈[$\frac{1}$,$\frac{1}{a}$].若0<a<b≤2,求a、b的值.

查看答案和解析>>

同步練習(xí)冊答案