已知圓M:(x+a)2+y2=16a2(a>0)及定點N(a,0),點P是圓M上的動點,點G在MP上,且滿足|GP|=|GN|,G點的軌跡為曲線C.

(1)求曲線C的方程;

(2)若點A(1,0)關(guān)于直線x+y-t=0(t>0)的對稱點在曲線C上,求a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+
3
2
x)2+y2=
9r2
4
,點N(3r,0),其中r>0,設(shè)P是圓上任一點,線段PN上的點Q滿足
PQ
QN
=
1
2

(1)求點Q的軌跡方程;
(2)若點Q對應(yīng)曲線與x軸兩交點為A,B,點R是該曲線上一動點,曲線在R點處的切線與在A,B兩點處的切線分別交于C,D兩點,求AD與BC交點S的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+
5
)2+y2=36
,定點N(
5
,0)
,點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足
NP
=2
NQ
GQ
NP
=0

(I)求點G的軌跡C的方程;
(II)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標(biāo)原點,設(shè)
OS
=
OA
+
OB
,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+
3
a)2+y2=16a2(a>0)
及定點N(
3
a,0)
,點P是圓M上的動點,點G在MP上,且滿足|GP|=|GN|,G點的軌跡為曲線C.
(I)求曲線C的方程;
(II)若點A(1,0)關(guān)于直線x+y-t=0(t>0)的對稱點在曲線C上,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+
5
)2+y2=36
,定點N(
5
,0),點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足
NP
=2
NQ
GQ
NP
=0

(1)求點G的軌跡C的方程;
(2)過點(2,0)作斜率為k的直線l,與曲線C交于A,B兩點,O是坐標(biāo)原點,是否存在這樣的直線l,使得
OA
OB
≤-1?若存在,求出直線l的斜率k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案