已知矩形ABCD,AB=4,BC=3,沿對角線AC將矩形ABCD折成一個空間四邊形,則空間四邊形ABCD的外接球的體積為( 。
分析:先確定球心的位置,然后求出球的半徑,再解出外接球的體積
解答:解:由題意知,球心到四個頂點的距離相等,
所以球心為對角線AC的中點,且其半徑為AC長度的一半
5
2

則V=
4
3
π×(
5
2
3=
125π
6

故選 A
點評:本題考查球的內(nèi)接多面體,球的體積,考查學(xué)生發(fā)現(xiàn)問題解決問題的能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知矩形ABCD中,AB=2
2
,BC=1.以AB的中點O為原點建立如圖所示的平面直角坐標(biāo)系xoy.
(1)求以A,B為焦點,且過C,D兩點的橢圓的標(biāo)準(zhǔn)方程;
(2)過點P(0,2)的直線l與(1)中的橢圓交于M,N兩點,是否存在直線l,使得以線段MN為直徑的圓恰好過原點?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD的頂點都在半徑為5的球O的球面上,且AB=6,BC=2
5
,則棱錐O-ABCD的側(cè)面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知矩形ABCD中,AB=
2
,AD=1,將△ABD沿BD折起,使點A在平面BCD內(nèi)的射影落在DC上.
(1)求證:平面ADC⊥平面BCD;
(2)求點C到平面ABD的距離;
(3)若E為BD中點,求二面角B-AD-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD,過A作SA⊥平面AC,再過A作AE⊥SB,交SB于E,過E作EF⊥SC交SC于F.

(1)求證:AF⊥SC;

(2)若平面AEF交SD于G,求證:AG⊥SD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD中,A(-4,4)、D(5,7),中心E在第一象限內(nèi)且與y軸的距離為一個單位,動點P(x,y)沿矩形一邊BC運動,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案