等差數(shù)列{an}中,前2n-1項(xiàng)中奇數(shù)項(xiàng)的和為105,偶數(shù)項(xiàng)的和為87,則an=( 。
A.-17B.15C.18D.20
設(shè)數(shù)列公差為d,首項(xiàng)為a1
奇數(shù)項(xiàng)共n項(xiàng):a1,a3,a5,…,a(2n-1),令其和為Sn=105,
偶數(shù)項(xiàng)共(n-1)項(xiàng):a2,a4,a6,…,a2n-2,令其和為Tn=87,
有Sn-Tn=a(2n-1)-{(a2-a1)+(a4-a3)+…+[a(2n-2)-a(2n-3)]}=a(2n-1)-(n-1)d=105-87=18,
有a(2n-1)=a1+(2n-1-1)d=a1+(2n-2)d,
∴a(2n-1)-(n-1)d=a1+(n-1)d=18,
則數(shù)列中間項(xiàng)為an=a1+(n-1)d=a1+nd=18.
故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項(xiàng)和Sn<0時(shí),n的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項(xiàng)和S2n-1=38,則n等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,設(shè)S1=10,S2=20,則S10的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習(xí)冊(cè)答案