焦點(diǎn)在x軸上,離心率為,實(shí)軸長為2的雙曲線的方程為

[  ]

A.
B.
C.
D.
答案:C
解析:

解:


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
2
2
,且橢圓經(jīng)過圓C:x2+y2-4x+2
2
y=0的圓心C.
(1)求橢圓的方程;
(2)設(shè)直線l過橢圓的焦點(diǎn)且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的焦點(diǎn)在x軸上,離心率為
1
2
,對稱軸為坐標(biāo)軸,且經(jīng)過點(diǎn)(1,
3
2
).
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線y=kx-2與橢圓E相交于A,B兩點(diǎn),在OA上存在一點(diǎn)M,OB上存在一點(diǎn)N,使得
MA
=
1
2
AB
,若原點(diǎn)O在以MN為直徑的圓上,求直線斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=
3
2
,它與直線x+y+1=0交于P、Q兩點(diǎn),若OP⊥OQ,求橢圓方程.(O為原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=
2
2
,點(diǎn)F1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),過右焦點(diǎn)F2且垂直于長軸的弦長為
2

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的左焦點(diǎn)F1作直線l,交橢圓于P,Q兩點(diǎn),若
F2P
F2Q
=2
,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
,且經(jīng)過點(diǎn)M(4,1).直線l:y=x+m交橢圓于A,B兩不同的點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)|AB|=
12
5
2
時(shí),求m的值;
(3)若直線l不過點(diǎn)M,求證:直線MA,MB與x軸圍成一個(gè)等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案