設(shè)二次函數(shù)滿足(+2)=(2-),且方程的兩實根的平方和為10,的圖象過點(0,3),
⑴求()的解析式.
⑵求在上的值域。
(1);(2)[-1,0].
【解析】
試題分析:(1)設(shè)
∵(+2)=(2-),∴的圖像有對稱軸, ∴,.
∵的圖象過點(0,3),∴,∴
設(shè)方程的兩根為,則:,
由,得:,∴,解得:.
∴.
(2)由(1)知,圖象對稱軸為x=2,即在x=2時,取到最小值-1,在x=-1,3時,取到最大值0,所以函數(shù)在的值域為[-1,0].
考點:本題主要考查二次函數(shù)圖象和性質(zhì),待定系數(shù)法。
點評:中檔題,二次函數(shù)圖象和性質(zhì),是高考必考內(nèi)容,往往與其它知識綜合在一起,本題首先利用待定系數(shù)法求得解析式,為進(jìn)一步研究函數(shù)在指定區(qū)間的值域打下基礎(chǔ)。
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013江蘇省徐州市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)二次函數(shù)滿足下列條件:①當(dāng)時,的最小值為,且圖像關(guān)于直線對稱;②當(dāng)時,恒成立.
(1)求的值;
(2)求的解析式;
(3)若在區(qū)間上恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三下學(xué)期第一次月考理科數(shù)學(xué) 題型:解答題
(本小題滿分12分,(1)小問6分,(2)小分6分.)
設(shè)二次函數(shù)滿足,,且方程
有等根.(1)求的解析式;
(2)若對一切有不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012年山東省濟寧市高一上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本小題滿分12分)
設(shè)二次函數(shù)滿足下列條件:①當(dāng)時,的最小值為,且圖像關(guān)于直線對稱;②當(dāng)時,恒成立.
(1)求的值
(2)求的解析式;
(3)若在區(qū)間上恒有,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com