某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、10B、20C、40D、60
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由已知的三視圖可得:該幾何體是一個以俯視圖為底面的三棱柱截去一個同底等高的三棱錐后,所得的組合體,分別代入棱錐和棱柱體積公式,可得答案.
解答:解:由已知的三視圖可得:該幾何體是一個以俯視圖為底面的三棱柱截去一個同底等高的三棱錐的組合體,
故幾何體的體積V=(1-
1
3
)Sh=
2
3
×
1
2
×3×4×5=20,
故選:B
點評:本題考查的知識點是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

斜率為-3,在x軸上截距為-2的直線的一般式方程是( 。
A、3x+y+6=0
B、3x-y+2=0
C、3x+y-6=0
D、3x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖中的功能是( 。
A、算法的起始與結(jié)束
B、算法輸入和輸出信息
C、計算、賦值
D、判斷條件是否成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)系中,質(zhì)點P自極點出發(fā)作直線運動到達圓:ρ+4cosθ=0的圓心位置后順時針方向旋轉(zhuǎn)60°后直線方向到達圓周ρ+4cosθ=0上,此時P點的極坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線
x=sinθ
y=sin2θ
(θ為參數(shù))與直線y=x+2的交點坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=lg(x+
x2+1
)+sinx,當(dāng)0≤θ≤
π
2
時,f(msinθ)+f(1-m)>0恒成立,則實數(shù)m的取值范圍是(  )
A、(-∞,1)
B、(-∞,0)
C、(-∞,
1
2
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(t+
1
t
-m),(t>0)的值域為R,則m的取值范圍是( 。
A、(-∞,-2)
B、(-2,2)
C、[2,+∞)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

行列式
.
10   -1
21    3
-1-3   1
.
中-3的代數(shù)余子式的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=8x的焦點F也是雙曲線
x2
a2
-
y2
b2
=1
的一個焦點,P是拋物線與雙曲線的一個交點,若|PF|=5,則此雙曲線的離心率e=( 。
A、
2
B、
3
C、2
D、
2
+1

查看答案和解析>>

同步練習(xí)冊答案