設(shè)函數(shù),已知曲線在點(diǎn)處的切線方程是
(1)求的值;并求出函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最值.

(1)的遞增區(qū)間為,的遞減區(qū)間為 ;
(2), 。           

解析試題分析:(1)利用求導(dǎo),曲線在某點(diǎn)處的切線方程的斜率等于在該點(diǎn)處導(dǎo)函數(shù)值,導(dǎo)函數(shù)大于0解不等式得到單調(diào)增區(qū)間,導(dǎo)函數(shù)小于0解不等式得到單調(diào)減區(qū)間。(2)利用單調(diào)區(qū)間,求區(qū)間內(nèi)的最大最小值,然后與端點(diǎn)的函數(shù)值進(jìn)行比較,最大的為最大值,最小的為最小值。
試題解析:(1),,
.                                      3分
, 
,得;令,得
的遞增區(qū)間為
的遞減區(qū)間為                          7分
(2)由(1)知列表得


-1



1

 

0

0

-1
遞增
極大
遞減
-1
 
由表得當(dāng)時(shí),
,
考點(diǎn):1、導(dǎo)數(shù)在研究函數(shù)單調(diào)性中的應(yīng)用;2、利用函數(shù)單調(diào)性求函數(shù)的最值問(wèn)題;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)
(1)求函數(shù)的極值;
(2)設(shè)函數(shù),對(duì),都有,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖像與函數(shù)的圖像有3個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax2-(a+2)x+ln x.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對(duì)任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,
(1)若的單調(diào)減區(qū)間是,求實(shí)數(shù)a的值;
(2)若對(duì)于定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)有兩個(gè)極值點(diǎn), 且.若恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)若時(shí)有極值,求實(shí)數(shù)的值和的極大值;
(2)若在定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)。
(1)若的單調(diào)減區(qū)間是,求實(shí)數(shù)a的值;
(2)若函數(shù)在區(qū)間上都為單調(diào)函數(shù)且它們的單調(diào)性相同,求實(shí)數(shù)a的取值范圍;
(3)a、b是函數(shù)的兩個(gè)極值點(diǎn),a<b,。求證:對(duì)任意的,不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)當(dāng)為自然對(duì)數(shù)的底數(shù))時(shí),求的最小值;
(2)討論函數(shù)零點(diǎn)的個(gè)數(shù);
(3)若對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù) 
(1) 當(dāng)時(shí),求函數(shù)的極值;
(2)若,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(3)在(2)的條件下,設(shè)在區(qū)間內(nèi)的零點(diǎn),判斷數(shù)列的增減性.

查看答案和解析>>

同步練習(xí)冊(cè)答案